The delta-models of reactive elements and low-pass filters


Abstract

Frequency limitations of lumped and distributed reactive elements traditional models are considered. Based on equivalent ciruit of infinitely short transmission line section inductance and capacitance models with properties correspond to delta-function are received. These models called delta-models are without frequency restrictions. In the delta-model graphic designation delta-function length is directly proportional to inductance or capacitance value. Unlike to ordinary graphic designations delta-models allow to represent scheme reactivities values ratios. Traditional models and delta-models reactive elements frequency characteristics are compared. It is found that because of frequency limitations traditional planar microstrip quasi-lumped reactive elements characteristics have substantial errors. Considerable reduction of errors is ensured by microstrip quasi-lumped reactive elements on the basis of three-dimensional inhomogeneities. Based on reactive elements delta-models Butterworth and Chebyshev low-pass filters delta-models are presented. Low-pass filter delta-model "prompt" possibility of filter selectivity increasing. Frequency characteristics of Chebyshev low-pass filter designed on traditional planar microstrip quasi-lumped reactive elements and three-dimensional inhomogeneities are given.

How to cite:

 
GOST 7.1:2006 Harvard
 
Нелін Є. А. Дельта-моделі реактивних радіоелементів та фільтрів нижніх частот / Є.А. Нелін, А.В. Шульга, Я.Л. Зінгер // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2017. – № 69. – с. 72-77. Nelin, E. A., Shulha, A. V., Zinher, Ya. L. (2017) The delta-models of reactive elements and low-pass filters. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 69, pp. 72-77. (in Ukrainian)
 

Full Text:


References


Перелік посилань

Doebelin E. O. System dynamics: modeling, analysis, simulation, design / E. O. Doebelin. - N. Y. : CRC Press. - 1998. - 759 p.

Leondes C. T., ed. Mems/Nems: handbook techniques and applications, Vol. 1 / C. T. Leondes, ed. - N. Y.: Springer. - 2006. - 387 p.

Vemuri V. Modeling of complex systems: an introduction / V. Vemuri. - N. Y.: Academic Press, Inc. - N. Y.: Springer. - 1978. - 447 р.

Hong J.-S. Microstrip Filters for RF/Microwave Applications / J.-S. Hong. - N. Y. : Wiley. - 2011. - 656 p.

Зернов Н. В. Теория радиотехнических цепей / Н. В. Зернов, В. Г. Карпов. - Л. : Энергия. - 1972. - 816 с.

Нелін Є. А. Водолазская М. В. Модель импедансных дельта-неоднородностей для микро- и наноструктур / М. В. Водолазская, Е. А. Нелин // Известия вузов. Радиоэлектроника. - 2014. - Т. 57, № 5. - С. 25-34.

Назарько А. И. Двухфазный электромагнитный кристалл / А. И. Назарько, Е. А. Нелин, В. И. Попсуй, Ю. Ф. Тимофеева // Письма в ЖТФ. - 2011. - Т. 37, № 4. - С. 81-86.

Нелин Е. А. Высокоэффективные электромагнитнокристаллические неоднородности / Е. А. Нелин, А. И. Назарько // ЖТФ. - 2013. - Т. 83, № 4. - С. 146-148.

References

Doebelin E. O. (1998) System dynamics: modeling, analysis, simulation, design, CRC Press, 759 p.

Leondes C. T., ed. (2006) Mems/Nems: handbook techniques and applications, Vol. 1, Springer, 387 p. DOI: 10.1007/b136111

Vemuri V. (1978) Modeling of complex systems: an introduction, Academic Press Inc., 447 p. DOI: 10.1016/B978-0-12-716550-9.50010-8

Hong J.-S. (2011) Microstrip Filters for RF/Microwave Applications, Wiley, 656 p. DOI: 10.1002/9780470937297.scard

Zernov N. V. and Karpov V. G. (1972) textit{Teoriya radiotekhnicheskikh tsepei. [The Theory of Radio Engineering Chains], Leningrad, Energy, 816 p.

Vodolazka M. V. and Nelin E. A. (2014) Model of impedance delta-inhomogeneities for micro- and nanostructures. Radioelectronics and Communications Systems, Vol. 57, No. 5, pp. 208-216. DOI: 10.3103/s0735272714050033

Nazarko A. I., Nelin E. A., Popsui V. I. and Timofeeva Yu. F. (2011) Two phase electromagnetic crystal. Technical Physics Letters, Vol. 37, No. 2, pp. 185–187. DOI: 10.1134/s1063785011020283

Nelin E. A. and Nazarko A. I. (2013) Effective electromagnetocrystalline inhomogeneities. Technical Physics, Vol. 58, No. 4, pp. 612–614. DOI: 10.1134/s1063784213040166






Copyright (c) 2017 Нелін Є.А., Шульга А.В., Зінгер Я.Л.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.