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This paper introduces new detector named newly adaptively designed near maximum likelihood detector
(NADD). This detector combines adaptively three types of near maximum likelihood detectors, pseudobi-
nary, pseudoquaternary, and pseudooctonary. The performances of NADD, pseudobinary, pseudoquaternary,
and pseudooctonary detectors are measured using data transmission at 9.6 kb/s over telephone channel. Si-
mulation results show that the performance of NADD is better than the performances of pseudobinary, and
pseudoquaternary detectors, but little bit worse than the performance of pseudooctonary detector.
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Introduction

The Maximum Likelihood Sequence Detector(MLSD)
is a procedure for estimating a sequence of bits from
a sequence of channel output observables, given a
model of the communication system. In the presence of
Intersymbol Interference(ISI), the Viterbi algorithm(VA)
provides an efficient way of computing the MLSD [1, 2].
However, the VA still becomes impractical when the time
spread of the ISI is large because of the exponential
relation between ISI time spread and VA complexity.

One way of reducing the complexity of Viterbi
detector is by giving the VA an approximate channel
model with a shorter time spread than that of the ori-
ginal channel. Considerable researches have used this
way to achieve the performance of the VA at reduced
complexity [3–18].

Another way which is considered in this paper is to
use detectors called Near Maximum Likelihood Detectors
[19–26]. These detectors operate similarly to Viterbi
algorithm, but using different selection process for the
stored sequences of possible data symbol values, and
only a very few of these sequences are stored with the
corresponding costs.

1 Data transmission system

Fig. 1 shows the model of data transmission system.
The first part in this model is random data generator
which generates binary data, and each 4-bit is mapped
into one of 16-point QAM constellation. Thus, the output
of random data generator is data symbols {𝑠𝑖}, and the
possible values of 𝑠𝑖 are given by all combination of ±1,

±3, & ±𝑗1, ±𝑗3 where 𝑗 =
√
−1. Then, the data symbols

{𝑠𝑖} enter the Quadrature Amplitude Modulation(QAM)
transmitter which consists of transmitter filter and QAM
modulator. The transmitter filter is a low-pass filter
performs the function of limiting the signal spectrum
before modulation process.
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Fig. 1. Model of data transmission system

The resulting output of the QAM transmitter is
QAM signal with carrier frequency of 1800 Hz and
symbol rate of 2400 baud giving an information rate
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of 2400 × 4 bits = 9600 b/s. The output of the QAM
transmitter passes through telephone channel, and Addi-
tive White Gaussian Noise (AWGN) added to the signal
before entering the QAM receiver. The QAM receiver
consists of QAM demodulator and receiver filter. The
receiver filter is a low-pass filter used in combination
with the transmitter filter to produce realistic levels of
intersymbol interference. The output of QAM receiver is
data symbols {𝑟𝑖} used by the Least Mean Square (LMS)
estimator to estimate the sampled impulse response
(SIR) of baseband telephone channel. Finally, the data
symbols {𝑟𝑖} and SIR are used by the detector to obtain
the detected symbols {𝑠′𝑖}.

2 Detector model

2.1 Pseudo-binary, -quaternary,

-octonary detector

The pseudobinary detector (BD), pseudoquaternary
detector (QD) [20], and pseudooctonary detector (OD)
[24] are described as follows.

Just prior to the receipt of the signal sample 𝑟𝑖 at
time 𝑡 = 𝑖𝑇 , the detector holds in store 𝑘 (𝑛-component)
vectors 𝑄𝑖−1 given below (𝑘 = 2 for pseudobinary, 𝑘 = 4
for pseudoquaternary and 𝑘 = 8 for pseudooctonary),

𝑄𝑖−1 = [𝑥𝑖−𝑛 𝑥𝑖−𝑛+1 . . . 𝑥𝑖−1] (1)

where 𝑥𝑖 is possible value of 𝑠𝑖.
Each stored vector is associated with a cost 𝑈𝑖−1

given by

𝑈𝑖−1 =

𝑖−1∑︁
𝑗=0

⃒⃒⃒⃒
⃒𝑟𝑗 −

𝑔∑︁
ℎ=0

𝑥(𝑗−ℎ)𝜈ℎ

⃒⃒⃒⃒
⃒
2

=

=

𝑖−2∑︁
𝑗=0

⃒⃒⃒⃒
⃒𝑟𝑗 −

𝑔∑︁
ℎ=0

𝑥(𝑗−ℎ)𝜈ℎ

⃒⃒⃒⃒
⃒
2

+ 𝑤𝑖−1 =

= 𝑈𝑖−2 + 𝑤𝑖−1 (2)

where {𝑣ℎ} is the sampled impulse response of baseband
telephone channel (estimated by LMS estimator) havi-
ng length of (𝑔 + 1) (where 𝑔 < 𝑛), and 𝑤𝑖−1 is the
corresponding estimate of the noise component in the
received sample 𝑟𝑖−1.

On the receipt of the signal sample 𝑟𝑖, the detector
expands every vector 𝑄𝑖−1 into four (𝑛+1) components
vectors {𝑃𝑖}, given below, having smallest cost. The
selection of 𝑃𝑖 is achieved through the use of simple
threshold-level comparison and does not involve the
computation of any costs.

𝑃𝑖 = [𝑥𝑖−𝑛 𝑥𝑖−𝑛+1 . . . 𝑥𝑖] (3)

The first 𝑛-components of 𝑃𝑖 are as shown in the
original vector 𝑄𝑖−1 and the last component 𝑥𝑖 takes

on any one of the four different values of its 16 possible
values. In pseudobinary, the number of expanded vectors
is 8 (see Fig. 2), in pseudoquaternary is 16 (see Fig. 3),
while, in pseudooctonary is 32 (see Fig. 4). Then the
detector evaluates for each expanded vector 𝑃𝑖 its cost
given by

𝑈𝑖 = 𝑈𝑖−1+

⃒⃒⃒⃒
⃒𝑟𝑖 −

𝑔∑︁
ℎ=0

𝑥(𝑖−ℎ)𝜈ℎ

⃒⃒⃒⃒
⃒
2

= 𝑈𝑖−2+𝑤𝑖−1+𝑤𝑖 (4)

The detector then selects the vector 𝑃𝑖 with the
smallest cost and takes its first component 𝑥𝑖−𝑛 as the
detected value 𝑠′𝑖−𝑛 of the data symbol 𝑠𝑖−𝑛.

All vectors {𝑃𝑖} for which 𝑠′𝑖−𝑛 ̸= 𝑥𝑖−𝑛 are discarded,
and the first components of all remaining vectors are
omitted to give the corresponding 𝑛-component vectors
{𝑄𝑖} where

𝑄𝑖 = [𝑥𝑖−𝑛+1 𝑥𝑖−𝑛+2 . . . 𝑥𝑖] (5)

The detector then selects from the resulting vectors
{𝑄𝑖} the 𝑘 vectors with the lowest costs {𝑈𝑖}.The k
vectors {𝑄𝑖} together with their costs are stored in
preparation for the next detection cycle.
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Fig. 2. Configuration of pseudobinary detector

After each detection process, and to prevent overflow
due to the increase in costs over any transmission, the
smallest cost is subtracted from the cost of each vector,
so that the value of the smallest cost is always reduced
to zero.

The starting up procedure for the detector begins
with k stored vectors {𝑄𝑖−1} that are all the same
and correct. A zero cost is allocated to one of the k
vectors and a very high cost to each of the remaining
vectors. After a few received samples, the detector holds
𝑘 vectors which are all different and are all derived from
the original vector with zero cost.
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Fig. 3. Configuration of pseudoquaternary detector
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Fig. 4. Configuration of pseudooctonary detector

2.2 Newly adaptively designed detector

This newly adaptively designed detector (NADD)
combines adaptively BD, QD, and OD. The value of 𝑘

changes between 2, 4, and 8 which is assigned every time
a signal sample 𝑟 is received (see Fig. 5). One criteria of
assigning the value of 𝑘 is given below,

𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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[︁
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3

]︁
(6)

The above criterion assigns the value of 𝑘 depending
on comparison between the current minimum value of
𝑤 and the average or half of the average of previous
three minimum values of 𝑤. When the value of (𝑤𝑖)𝑚𝑖𝑛

increases, more vectors are needed to be evaluated, so 𝑘
increases too, and vice versa.
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Fig. 5. Newly adaptively designed detector

The detector needs to store (𝑤𝑖−3)𝑚𝑖𝑛, (𝑤𝑖−2)𝑚𝑖𝑛,
and (𝑤𝑖−1)𝑚𝑖𝑛 before subtracting the cost of any vector
from the smallest cost.

The starting up procedure begins with 𝑘 = 8 vectors
that are all the same and correct. A zero cost is allocated
to one of the eight vectors and a very high cost to each
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of the remaining seven. The initial values of (𝑤𝑖−3)𝑚𝑖𝑛,
(𝑤𝑖−2)𝑚𝑖𝑛, and (𝑤𝑖−1)𝑚𝑖𝑛 are zero.

3 Simulation results

A series of computer simulation tests have been
carried out on the system in Fig. 1 with four types
of detectors, BD, QD, OD, and NADD to determine
their relative tolerance to AWGN when operating over
telephone channel.

The performance of the whole system is measured by
drawing symbol error rate (SER) versus signal-to-noise
ratio (SNR). The SER is given by

𝑆𝐸𝑅 = 𝑁𝐸𝐷𝑆/𝑁𝑇𝑆

where NEDS is the number of erroneous detected samples
& NTS is the number of total transmitted samples.

Fig. 6 shows comparison among the four detectors.
It seems that at error rate of 10−5 ,the performance of
NADD is better than the performance of BD by approxi-
mately 0.6 dB, and better than the performance of QD by
approximately 0.2 dB , but worse than the performance
of OD by approximately 0.1 dB.

Fig. 6. Error rate perfomance

Conclusion

A new detector was developed to mitigate the
ISI introduced by the communication channel. This
detector which is named NADD combines adaptively
three detectors BD, QD, and OD. So, the three detectors
can be replaced by one detector which leads to reduce the
complexity of whole detector model. Simulation results
show that the performance of NADD is better than that
for BD and QD but little bit worse than that for OD.
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Новий пiдхiд до реалiзацiї декодера ква-
зiмаксимальної правдоподiбностi

Муханнед Аль-Равi, Муаайед Аль-Равi

В роботi представлений новий адаптивний детектор
квазiмаксимального правдоподiбностi (НАДКП). Цей де-
тектор представляє собою адаптивне поєднання в собi
трьох типiв детекторiв максимальної правдоподiбностi:
псевдобiнарного, псевдочетвертного i псевдовiсiмкового.
Продуктивнiсть НАДКП, псевдобiнарного, псевдочетве-
рiчного i псевдовосьмерiчного детекторiв вимiряна за
допомогою передачi даних по телефонному каналу на
швидкостi 9.6 кб/с. Результати моделювання показали,
що продуктивнiсть НАДКП краща, нiж у псевдобiнарно-
го i псевдочетвертного детекторiв, але трохи гiрша нiж
продуктивнiсть псевдовiсiмкового детектора.

Ключовi слова: мiжсимвольна iнтерференцiя; детектор
квазiмаксимальної правдоподiбностi; адаптивне виявлен-
ня

Новый подход к реализации декодера
квазимаксимального правдоподобия

Муханнед Аль-Рави, Муаайед Аль-Рави

В работе представлен новый адаптивный детектор
квазимаксимального правдоподобия (НАДКП). Этот де-
тектор представляет собой адаптивное сочетание в се-
бе трех типов детекторов максимального правдоподо-
бия: псевдобинарного, псевдочетверичного и псевдово-
сьмеричного Производительность НАДКП, псевдобинар-
ного, псевдочетверичного и псевдовосьмеричного детекто-
ров измеряна с помощью передачи данных по телефон-
ному каналу на скорости 9.6 кб/с. Результаты моделиро-
вания показали, что производительность НАДКП лучше,
чем у псевдобинарного и псевдочетверичного детекторов,
но немного хуже чем производительность псевдовосьме-
ричного детектора.
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тектор квазимаксимального правдоподобия; адаптивное
обнаружение
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