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This study reviews the main approaches to the analyzing of modern methods of digital processing of lung
sounds. It is shown that each of the existing methods gives a definite result in solving a particular problem.
However, none of the methods that were reviewed, can’t be called universal and completely convenient for
using in the real conditions of the hospital. Certain numerical parameters can be obtained, as a result of the
work of each method. In this study it is showed that machine learning can serve as a unifying mechanism for
the considered methods. A set of different parameters can be the input arguments of the classifier, which will
be properly trained. As a result, the primary opinion in a convenient and accessible form can be presented
to the doctor.
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Introduction

Lung sound is a physiological sound signal produced
by the human respiratory system during the exchange
process with external environment, which contai-
ns large amount of physiological and pathological
information.

According to general lung sounds classification of
the American Thoracic Society, the typical lung sounds
can be divided into normal lung sounds, bronchial
sound, continuous or discontinuous additional audio,
etc. The continuous or discontinuous additional sounds
include coarse crackles, fine crackles, asthma beep and
rhonchi [1].

Different lung disease can be based on the
corresponding test for diagnosis of pulmonary
abnonnal sound, such as wheezing sound can be used
to detect asthma [2], rhonchi for diagnosis of chronic
obstructive pulmonary disease [3] effective and sound
burst is one of the most important characters of
pneumonia and pulmonary fibrosis disease detecti-
on [4], and so on.

Pulmonary diseases represent a large disease
burden in terms of morbidity and mortality worldwi-
de. Auscultation, the process of listening to a pati-
ent’s heart or lung sounds, is perhaps the oldest and
most common medical procedure still in use today.
This technique was significantly advanced through the
invention of the stethoscope by Rene Laennec, exactly
200 years ago.

In the hospital, using percussion and auscultation
are the most common ways for physical examinati-
on. Recently, in order to develop tele-medicine and
home care system and to assist physician getting better
auscultation results; electric stethoscope and computer
analysis have become an inevitable trend.

Recently, auscultation has become useful not only
for pointofcare diagnostics, but also as a tool for remote
patient monitoring and telemedicine.

The problem of accurate and timely diagnosis
is relevant in relation to the increased number of
patients and with the remaining high percentage of
unsatisfactory outcomes of treatment. Application of
computer methods of recording and analysis in the
research of noise of lungs allows the doctor to remove
the subjectivity of hearing and to identify pathologi-
cal features which are not audible to the human ear.
Modern medicine is developing very fast, so engineers
are trying to find new and more accurate methods of
diagnosis that allow detecting pathology earlier and
provide medical care [5].

The analysis of lung sounds, collected through
auscultation, is a fundamental component of
pulmonary disease diagnostics for primary care and
general patient monitoring for telemedicine.

The development of computer algorithms to the
study of lung sound provides a broader research ideas
and methods, with the development of digital signal
processing.

http://radap.kpi.ua/radiotechnique/article/view/1463
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Modern technical and electronic means allow
conducting medical diagnostics at a higher level, faster,
more accurate and more comfortable for the patient
and the doctor.

In addition, it should be mentioned that electronic
auscultation and the extraction of diagnostically
valuable parameters from signals makes it possible to
use signals in telemedicine. Signed signals and / or their
parameters can be easily transferred, for example, to a
central server where the patient database can be stored,
or to another clinic.

In this study, an overview of modern techniques of
auscultation, methods of lung sounds analyzing, and
using to improve processing in machine learning is
given.

1 Methods of processing

The ability to record lung sounds allows si-
gnal processing and machine learning techniques to
automatically analyze the recorded sounds to provi-
de diagnostic support. For over 30 years, a number
of different signal processing and machine learning
methods have been proposed in the literature for
the automated detection of abnormal lung sounds
and diagnosis of pulmonary disease [6–9]. Many of
thesemethods focus on frequency domain features such
as peaks, or compare the ratio of power within certain
frequency bands.

In the research of respiratory sounds the division
overtones on pleural friction, dry and wet wheezing
are frequently used. They differ in frequency content,
duration and periodicity appearance in the audio path
of breath. Each of these phenomena is listened to
background basic breathing – bronchial and vesicular,
the presence of which in the overall case is not a disease.

1.1 Spectral analysis

Today, there is a quite vast array of approaches that
are based on the Fourier analysis. This method has
the advantage: calculation and informative results. The
first is classic spectral analysis of respiratory sounds
that is based on the determination of the spectral
density [10].

The main breathing (bronchial and vesicular)
occupies a very wide frequency range. This causes
major difficulties for using the frequency analysis of
breathing sounds. In most cases, it is quite problematic
to differ breathing noises against the background of the
main breathing through the overlap of frequency ranges
and a small difference in amplitudes.

Time-frequency analysis is used for more detai-
led analysis. This method allows researching the si-
gnal more detailed because provides information about
the time intervals and other frequency components.
This approach allows identifying a lot of auscultation

phenomena, however, it requires specific sound envi-
ronment in process of registration and high quality of
the recording equipment [11].

1.2 Wavelet Transform

Wavelet Transform (WT) is also used in lung
sounds signal processing, but it has its own di-
sadvantages. Different ways of signal extensions on
particular application have not been sufficiently
investigated yet.This effect of the border extensi-
on plays an important role in the lung sounds si-
gnal processing. Wavelet-spectrograms are the most
important product of the wavelet analysis and
complement to the usual spectrograms based on the
Short Time Fourier Transform. Wavelet-spectrograms
differ such features of signals that are invisible on the
graphs of signals and on Fourier spectrograms [12].

1.3 Autocorrelation analysis

Another approach based on autocorrelation
analysis that allows exploring signal for the presence
of repeating sounds, which can be very important
for respiratory diagnostic. The advantage of the
autocorrelation analysis comparing to frequency
analysis is that the frequency distortion and tonal
characteristics of breathing of particular person does
not affect the analysis results [13]. It means that the
lung sounds that were recorded in different clinics
can be analyzed regardless of which sound recording
equipment they were made. The greatest attention was
paid to the research of autocorrelation of the 3rd order.

The application of this method allows to detect
random artifacts (for example, cracking) in the process
of breathing, as well as determine the degree of their
nonperiodicity. As shown earlier, traditional spectral
analysis doesn’t allow to identificate of breathing
sounds because of the intersection of frequency ranges.

Cumulative analysis allows you to research signals
for finding the presence of random additional sound
in them, for example, crackling. This method allows
us to evaluate not only the monotony of the signal,
but also its frequency. A significant advantage of using
higher order autocorrelation to research lung noise is
the absence of an identical sound recording device.

1.4 Cepstral analysis

Today it is generally accepted that the cepstral
is the spectrum of the logarithm of the spectrum of
the output signal, it means, the primary spectrum
should be represented on a logarithmic scale. The main
advantage is the ability to provide output spectral
information even more compactly, when each harmonic
series of the output spectrum will be represented by
only one (ideally) component in the cepstral.

It is important to understand the fundamental di-
fferences that are between frequency components of the
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traditional spectrum and frequency components in the
spectrum, that called cepstrum. In the first case, any
frequency component has a physical sense signal with
this frequency and amplitude that truly present in the
output signal in the time domain. In the second case,
presence of harmonics in cepstrum can not mean that
the original spectrum has appropriate frequency.

1.5 Analysis methods of high-order

statistic

The complex nature of lung sounds is the reason
for applying to their analysis methods of high-order
statistic.

The energy spectrum data represents a complete
description of the Gaussian process. But in some cases
it is necessary to obtain information on deviations from
the Gaussian distribution and to obtain information
about the presence of nonlinear link. In such cases it
is better to use higher order spectrum (HOS, order>
2) that containing the required information. The
spectrum of the third order is bispectrum, the fourth
is the three spectrum. In fact, the power spectrum is a
second-order spectrum.

At least, there are 3 reasons for using HOS analysis
for processing biomedical signals:

– Suppressing of Gaussian noise and reducing of
dispersion. Gaussian noises have a zero-order
spectrum. Due to this, the high-order spectrum
does not contain noise components, which makes
it possible to detect useful signals more easily.

– Possibility of phase recovery. High-order
spectrum saves the information about the phase.

– Detection and the ability to characterize nonli-
near bonds in the biomedical signals. HOS is a
nonlinear data function, so it is a comfortable
tool for detecting nonlinearities [14].

1.6 The iterative method

Another method is the iterative method that based
on the kurtosis coefficient for detecting unsteady bi-
oacoustic signals was made by scientists from the
Department of Informatics and Communication, the
Technological and Educational Institute of Serres,
Greece, the Faculty of Electrical and Computer Engi-
neering, the University of Aristotle in Thessaloniki,
Thessaloniki, Greece. The purpose of their work was
to create a new technique based on the coefficient of
kurtosis for the determination of non-stationary bi-
oacoustic signals, such as sounds of the lungs. For
Gaussian signals, the kurtosis is zero, a significant
deviation from this value can be attributed to the
presence of non-Gaussian signals that are interesting
for diagnostics. These deviations from the zero value
can be used to formulate a criterion for identifying the
presence of non-stationary transient signals. Based on

the kurtosis criterion, the iterative kurtosis detector
was adopted, which gradually separates the useful si-
gnal from noise. The experimental results showed that
the iterative kurtosis detector is able to clearly detect
bioacoustic signals even when the amplitude of the
useful signal is high [15].

1.7 J. Method of acoustic intensities

The original method of acoustic intensities allows
dividing noises into the different spectral components
of air and structural conduction of voice and respi-
ratory.Observation of very close distances to sources
of whistles with different frequencies of spectral maxi-
mum can be interpreted as presence in one and the
same place of violations of respiratory tracts in the
chest, which, depending on compression in different
phases of breathing, give a variation of frequencies of
zone’s oscillations of closure of the respiratory tract.
Last effect may be a sign of the center of pathologi-
cal changes that associated with the inflammatory
process, in the respiratory tract, or their deformation
by adjacent pathologically altered areas of pulmonary
tissues. As a result of the simultaneous or sequential
calculation of the distance to the source of whistle from
several areas of the chest with the help of difference-
distance-finding methods, the location of the whistle
source in the lungs can also be estimated [16].

2 Machine Learning

Machine learning is the core of artificial intelligence,
it is the basic way to make the computer intelli-
gence. For lung sound signal processing, the researchers
expect to under the appropriate algorithm and the
model makes the lung sound recognition classifier can
build in a lot of lung sound data processing and
improve their own judgment in discriminant ability,
fmally realizes the accurate effective automatic recogni-
tion and classification.

Classification of lung sound objective is to build
a classification function or classification model (also
called classifier). the model can be according to a
certain classification method for the mapping of data
items to extract the characteristics of the data to a
given category of one.

Typical classification method in the field of lung
sound classification also got different degrees of trial
and application, including the following several classi-
fication methods in classification of lung sounds are
more widely in the research and application.

2.1 Vector Quantization

Vector Quantization (VQ) is an extremely
important signal compression method. In speech signal
processing of VQ accounts for an important position.
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Widely used in speech coding, speech recognition and
speech synthesis, etc.

Through the technology of wavelet packet
decomposition, respectively to the crackles and wheezi-
ng sound classification experiment, the results show
that the construction of feature extraction based on
wavelet packet of classifier for crackles methods more
than ever, while the wheezing sound instead.

2.2 Artificial Neural Network

Artificial Neural Network (ANN), a mathematical
model to simulate neuron activity, is based on imitation
of the brain Neural Network structure and function
of an information processing system. Artificial neural
network has very strong self-learning, self-organizing,
adaptive and nonlinear function approximation abi-
lity, has a strong fault tolerance. It can realize the
simulation and prediction and fuzzy control, and other
functions. Is a powerful tool for dealing with a nonli-
near system. Neural network is a computing model, by
a large number of nodes (or neurons) and join each
other. Each node represents a specific output function,
known as the excitation function (activation functi-
on).Each connection between two nodes represents a
for weighted values through the connection signal,
called the weight, this is equivalent to the memory of
an artificial neural network. The output of the network
is in accordance with the network connection mode, the
different weights and incentive function. The network
itself is usually 771 an algorithm of nature or functi-
on approximation, can also be a logical strategy for
expression.

The results of using Fourier transform power
spectrum of normal lung sounds, wheezing sound and
burst classified recognition, show that the vector can be
correctly classified as much as 95% of the training, but
only 43% accurate classification of test vector. Method
of discrete wavelet transform (DWT) of normal lung
sound, a variety of abnormal lung sound classificati-
on recognition, divided into 6 categories according to
the results, the normal sound, wheezing sound, burst,
shrill, wheezing, rhonchi. Use 100% of the training set,
the classification accuracy, the use of the validation set
the classification accuracy of 94.02%. The results of
using the method of average power spectral density of
normal and abnormal lung sound classification recogni-
tion, show that the signal segmentation can make the
best overall classification rate from 60% Up to 70%.
On signal black man window can make the overall
classification rate increased from 56% to 66%.

2.3 Support Vector Machine

The Support Vector Machine (SVM) is based on
statistical learning theory based on VC dimension
theory and structure risk minimum principle, according
to the limited sample information in the complexity of
the model (on a particular learning accuracy of training

samples) and learning ability (not wrongly’s ability to
identity random sample) to seek the best compromise
between, in order to get the best generalization abili-
ty. The results of using the method of average power
spectrum and instantaneous frequency of normal lung
crackling sound, and snoring classification recognition,
showed that the PSD of frequency ratio and the average
instantaneous frequency and instantaneous frequency
switching time three feature extraction method, the
feature extraction method based on PSO has higher
classification accuracy, especially for rhonchi recogniti-
on accuracy as high as 90% - 95%.

2.4 K Nearest neighbor

K – to his Neighbour (KNN) classification algori-
thm, is a mature method in theory, is also one of the
most simple machine learning algorithms. The idea of
the method is: if a sample in the feature space k most
similar (in the feature space for adjacent) most of the
sample belongs to a category, then the sample also
belong to this category [17].

2.5 Decision tree method

A decision tree (also called a classification tree
or regression tree) is a decision support tool used
in statistics and data analysis for predictive models.
The structure of the tree includes “leaves” and
“branches”. On the edges (“branches”) of the decision
tree corresponds to features dependencies for target
function, the “leaves” contains the values of the target
function, and in the remaining nodes – the features
to separate the classes. To classify a new case, it is
required to go down the tree to the ”leave” and obtain
the corresponding value. The goal is to create a model
that predicts the value of the target variable based on
several variables at the input.

This method is easy to understand and interpret,
and does not require preparation of data, in addition it
allows to evaluate the model with the help of statistical
tests. This makes it possible to assess the reliability of
the model.

Using deep learning method, gives the ability to
automatically identify lung sounds from a reasonably
large number of patients — significantly larger than any
previously published study.

The creation of these algorithms enables the
possibility of self-contained automated systems that
can provide diagnostic guidance for telemedicine and
remote patient monitoring, as well as point-of-care di-
agnostics for lowskilled health workers in many parts
of the world [18].

3 Materials and methods

Using methods of higher order statistics (HOSA)
for analysis is a good idea because the breath sounds
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have the complex nature. Thus the interest can induce
spectral components of the respiratory sounds, as well
as phase components.

The calculation of the skewness and kurtosis coeffi-
cients used for the analysis of respiratory sounds in this
study:

𝑐3 = 𝐾3/𝜎
3,

𝑐4 = 𝜇4/𝜎
4,

(1)

where 𝜎2 is the variance, 𝐾3 is the third-order
cumulants:

𝐾3(𝜏1, 𝜏2) = lim
𝑇→∞

1

𝑇

𝑇∫︁
0

𝑥(𝑡)𝑥(𝑡− 𝜏1)𝑥(𝑡− 𝜏2)𝑑𝑡, (2)

𝜇4 is the fourth moment about the mean.
Non-zero values of the skewness coefficients allows

to evaluate the nature and extent of process deviation
from the Gaussian noise within of a one-dimensional
distribution.

Kurtosis is a measure of the “pointedness” of the
probability distribution of a real-valued random vari-
able. Under the above definition, the kurtosis of any
univariate normal distribution is 3.

4 Parametric estimation

Phase relationships of signals are lost in the power
spectrum and in the autocorrelation function. The hi-
gher order spectra make possible detection and quanti-
tative description of nonlinearities in signals (not only
stochastic). Such signals arise, when they are passed
through the systems with nonlinear characteristic. The
human body due to its inhomogeneity can be an
example of such nonlinear system.

Assuming that a real-valued lung sounds sequence
𝑥(𝑛) with zero mean is expressed by a pth-order
Autoregressive (AR) model:

𝑥(𝑛) =

𝑝∑︁
𝑘=1

𝑎𝑘𝑥(𝑛− 𝑘) + 𝜈(𝑛), (3)

where 𝜈(𝑛) is third-order stationary non-Gaussian whi-
te noise with zero mean. It satisfies 𝐸[𝜈(𝑛), 𝜈(𝑛+𝑚)] =
𝑄𝛿(𝑚), and 𝐸[𝜈(𝑛)𝜈(𝑛+ 𝑘)𝜈(𝑛+𝑚)] = 𝛽𝛿(𝑘,𝑚) ̸= 0,
where both 𝑄 and 𝛽 are constant.

Inasmuch the higher-order cumulants insensitive to
Gaussian process, we assume third-order moment of
𝜈(𝑛) is not zero that is 𝛽 = 𝐸[𝜈3(𝑛)] ̸= 0, then we can
get

𝐶3,𝑥(−𝑙,−𝑚)+

+

𝑝∑︁
𝑘=1

𝑎𝑘𝐶3,𝑥(𝑘 − 𝑙, 𝑘 −𝑚) =

= 𝛽𝛿(𝑙,𝑚), (4)

where 𝑙 and 𝑚 are arbitrary time delays (𝑙,𝑚 ≥ 0),
𝛿(𝑙,𝑚) is the 2-D unit impulse function. Choose (𝑝+1)
slices of third-order cumulant 𝐶3, 𝑥(−𝑙, −𝑚) at lags
𝑙 = 𝑚 = 0, 1, 2, . . . , 𝑝 and obtain the matrix equation:

𝐶 * 𝑎 = 𝛽. (5)

Solving it to get the 𝑝 parameters (𝑎1, 𝑎2, . . . , 𝑎𝑝)
of 𝐴𝑅-model we obtain the parametric bispectrum
estimation:

𝑆3𝑥(𝜔1, 𝜔2) = 𝛽𝐻(𝜔1)𝐻(𝜔2)𝐻
*(𝜔1 + 𝜔2), (6)

where

𝐻(𝜔) =
1

1 +
𝑝∑︀

𝑘=1

𝑎𝑘𝑒−𝑗𝜔𝑘

,

|𝜔| < 𝜋, and 𝜔𝑖 are normalized frequencies (bi-
frequencies) [9].

If we consider the 𝐴𝑅-model for three harmonics
with frequencies 𝑓𝑘, 𝑘 = 1, 2, 3, that harmonics are
quadratically phase coupled if 𝑓3 = 𝑓1+𝑓2. In this case
ideally𝐻(𝜔) contains impulses at ±𝑓𝑘, and 𝑆3𝑥(𝜔1, 𝜔2)
is given by

𝑆3𝑥(𝜔1, 𝜔2) =

=

(︃
3∑︁

𝑘=1

𝛿(𝜔1 ± 𝑓𝑘)

)︃
×

(︃
3∑︁

𝑘=1

𝛿(𝜔2 ± 𝑓𝑘)

)︃
×(︃

3∑︁
𝑚=1

𝛿(𝜔1 + 𝜔2 ± 𝑓𝑚)

)︃
. (7)

5 Results

Machine learning can be one of the best solution for
the task of diseases diagnosing. To solve this problem,
the best type is ”learning with a teacher”. In this study
a database of lung sounds that contain a set of specific
parameters was used. There are certain dependencies
between the parameters and the response that need to
be established. To do this training subset was used.

In this work, classifiers of different types for the
detection of lung diseases have been investigated and
analyzed. Namely, the classifier based on the k nearest
neighbors method, based on the decision trees (DT),
based on the support vector method (SVM).

So, the database of 134 patients (54 healthy and 80
patients with bronchopulmonary diseases) was used.
After using HOSA for our signals, parameters that
characterize healthy and sick patients were obtained.
However, since in fact the number of parameters were
significantly larger, as an example, we will show two of
them.

For example, skewness coefficients were calculated
for each breathing phase according to (1).It was found
that this coefficient for healthy patients has different
signs in the separate phases, as a result, the average
value for the whole signal is usually close to zero. The
histogram and the distribution function are shown in
Fig. 1a.
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(a) (b)

Fig. 1. The histogram and the distribution function of skewness coefficients for
(a) healthy patient, (b) with bronchitis.

For patients with recurrent bronchitis skewness
coefficient is negative in 84% of all cases, and therefore
the distribution function is shifted to negative values
(Fig. 1b).

Another parameter, the coefficient of kurtosis. It
was found that only for patients with bronchitis signals
this deviation may exceed 50% (Table 1 and 2).

Table 1 Kurtosis Coefficients for Healthy Patient

Cycle
Canal

1 2 3 4
1 4,7882 4,7496 6,4273 2,9331
2 5,6159 5,1656 6,2833 2,7222
3 4,8594 4,5263 v5,7857 2,2835
4 5,2248 5,3380 6,7789 2,6359
5 4,3024 3,2622 5,3425 3,0466
6 3,3622 4,0959 5,9297 3,1002
7 4,4517 4,6071 6,2788 3,1243

average 4,6578 4,5349 6,1180 2,8351
deviation 1,2956 1,2728 0,7755 0,5516
percent 27,82% 28,07% 12,68% 19,46%

Table 2 Kurtosis Coefficients for Patient with Bronchi-
tis

Cycle
Canal

1 2 3 4
1 1,3863 1,4278 14,7096 1,0446
2 2,0201 1,4418 8,3900 1,1014
3 6,7938 7,4924 33,7643 7,8754
4 1,5602 1,3462 7,7444 1,6048
5 1,7924 1,6827 12,8595 1,3002
6 8,3840 7,4080 12,2657 6,8368
7 8,5042 9,6923 11,6451 7,6167

average 4,3487 4,3559 14,4827 3,9114
deviation 4,1555 5,3364 19,2816 3,7053
percent 95,56% 122,51% 133,14% 94,73%

Seven features of the sound of breathing were obtai-
ned that were used to set up classifiers:

� the average of the four channels the value of the
asymmetry coefficient for each respiratory cycle;

� the root-mean-square value of the asymmetry
coefficient for each cycle;

� the average frequency in four channels
corresponding to the maximum value of the
bicocurrent function in each respiratory cycle;

� rms value of the given frequency;

� the frequency corresponding to the maximum of
the bicogeasure function of the entire signal not
splitted into respiratory cycles in each channel;

� average frequency in all channels;

� the maximum value of the bicoherence function
for each channel.

In the study, both a two-class classification
(healthy-sick) and a multi-class classification were
carried out. As a result, there were 4 classes:

� Class 1: Healthy;

� Class 2: Chronic obstructive pulmonary disease,
basal lower lobe pneumofibrosis;

� Class 3: Chronic obstructive pulmonary disease,
diffuse pneumofibrosis;

� Class 4: Another pathology.

The dataset was divided into training and test
subsets in the ratio of 85% and 15%.

The results of the work of various classifiers are
presented in Tables 3-5.

The final value was calculated as the average for all
four classes.

Table 3 SVM Classifier Results

Diagnosis Accuracy Recall F1-measure
Class 1 89% 59% 71%
Class 2 100% 82% 90%
Class 3 89% 80% 84%
Class 4 74% 44% 55%
Totals 88% 66% 75%

Table 4 k-Nearest Neighboors Classifier Results

Diagnosis Accuracy Recall F1-measure
Class 1 38% 40% 39%
Class 2 62% 50% 56%
Class 3 80% 40% 53%
Class 4 64% 77% 70%
Totals 60% 58% 58%
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Table 5 Decision Tree Classifier Results

Diagnosis Accuracy Recall F1-measure
Class 1 67% 56% 61%
Class 2 77% 66% 71%
Class 3 81% 75% 78%
Class 4 83% 77% 80%
Totals 77% 69% 72%

As an example of the of SVM method, the relation
of two features of the respiration sounds 𝑓 is shown
on Fig. 2.

Fig. 2. Example of the of SVM method work for two
parameters.

As we can see, for the dataset of the lung sounds,
the support vector machine and the decision tree classi-
fiers are proved to be optimal.

Conclusion

In this study the methods for analysis lung sounds
and the possibility of using machine learning to opti-
mize and universalize considered methods were revi-
ewed. Each of the reviewed methods of analysis is
used in processing, for example, as signal denoising or
for finding artifacts of lung sounds. As a result, we
obtain a sufficiently large number of some diagnosti-
cally valuable parameters. On the one hand, it is good,
but on the other hand it is rather inconvenient for
processing and perception of information. Symbiosis
of various methods of digital processing with modern
tools of machine learning will significantly improve the
accuracy of the methods, as well as greatly facilitate the
work of the doctor. In this study one of the methods
was used, it was found 7 features that were used in 3
different classifiers. For the dataset of the lung sound,
the SVM classifier and the decision tree classifier are
turned out as optimal. The greatest accuracy of the
right decisions was obtained for these classifiers.

The resulting models of classifiers can be easily
adapted for more features that significantly increases
the accuracy for further research.
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Використання методiв машинного на-
вчання для iдентифiкацiї захворювань
бронхолегеневої системи з використа-
нням звукiв легень

Чехович М. Г., Порєва Г. С., Тимофєєв В. I.,

Хенаф П.

Сучаснi технiчнi та електроннi засоби дозволяють
проводити медичну дiагностику на бiльш високому рiв-
нi, швидше, точнiше i комфортнiше для пацiєнта та
лiкаря. Здатнiсть записувати легеневi звуки дозволяє
обробляти сигнали та використовувати технологiї ма-
шинного навчання, щоб автоматично аналiзувати запи-
санi звуки для забезпечення дiагностичної пiдтримки.
Аналiз легеневих звукiв, зiбраних шляхом аускульта-
цiї є основним компонентом дiагностики захворювань
легень для первинної медичної допомоги та загально-
го монiторингу стану пацiєнтiв. Розробка комп’ютерних
алгоритмiв для вивчення легеневого звуку дає бiльш
широкi дослiдницькi можливостi. В роботi дослiдженi i
проаналiзованi сучаснi методи цифрового аналiзу звукiв
легень. Кожен з iснуючих методiв дає певний резуль-
тат у вирiшеннi конкретної проблеми, це може бути,
як i обезшумлення сигналу, так i знаходження тих чи
iнших артефактiв звукiв дихання. Також у статтi роз-
глянуто можливiсть застосування класифiкаторiв, що
є основою машинного навчання, для оптимiзацiї поста-
новки дiагнозiв захворювань легень. Розглянуто роботу
декiлькох класифiкаторiв, на основi попередньо розра-
хованих параметрiв з використанням апарату статистик
вищих порядкiв. Було встановлено, що метод опорних
векторiв, а також дерево прийняття рiшень є простими
та найточнiшими класифiкаторами для реалiзацiї i для

роботи з базою звукiв дихання. Отримана точнiсть ро-
боти класифiкаторiв є досить високою. Симбiоз рiзних
методiв цифрової обробки з сучасними iнструментами
машинного навчання дозволить iстотно пiдвищити то-
чнiсть роботи методiв, а також значно полегшити роботу
лiкаря.

Ключовi слова: звук легень; спектральний аналiз;
вейвлет-перетворення; машинне навчання

Использование методов машинного
обучения для идентификации заболе-
ваний бронхолегочной системы с испо-
льзованием звуков легких

Чехович М. Г., Порева А. С., Тимофеев В. И.,

Хенафф П.

Современные технические и электронные средства
позволяют проводить медицинскую диагностику на бо-
лее высоком уровне, быстрее, точнее и комфортнее для
пациента и врача. Способность записывать легочные
звуки позволяет обрабатывать сигналы и использовать
технологии машинного обучения, чтобы автоматически
анализировать записанные звуки для обеспечения диа-
гностической поддержки. Анализ легочных звуков, со-
бранных путем аускультации является основным компо-
нентом диагностики заболеваний легких для первичной
медицинской помощи и общего мониторинга состояния
пациентов. Разработка компьютерных алгоритмов для
изучения легочного звука дает более широкие иссле-
довательские возможности. В работе исследованы и
проанализированы современные методы цифрового ана-
лиза звуков легких. Каждый из существующих методов
дает определенный результат в решении конкретной
проблемы, это может быть, как и шумоподавление си-
гнала, так и нахождение тех или иных артефактов зву-
ков дыхания. Также в статье рассмотрена возможность
применения классификаторов, что является основой ма-
шинного обучения, для оптимизации постановки ди-
агнозов заболеваний легких. Рассмотрена работа не-
скольких классификаторов на основе предварительно
рассчитанных параметров с использованием аппарата
статистики высших порядков. Было установлено, что
метод опорных векторов, а также дерево принятия
решений являются простыми и точными классифика-
торами для реализации и для работы с базой звуков
дыхания. Полученная точность работы классификато-
ров является достаточно высокой. Симбиоз различных
методов цифровой обработки с современными инстру-
ментами машинного обучения позволит существенно по-
высить точность работы методов, а также значительно
облегчить работу врача.

Ключевые слова: звук легких; спектральный анализ;
вейвлет-преобразования; машинное обучение
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