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This article presents the analysis of periodic signal detection method based on Duffing system sensitivity
to weak influences. The described signal detection method is developed with using of Duffing system that
oscillates in chaotic state, without transitions to periodic state. The main advantage of such method is
the absence of periodic oscillation modes with low sensitivity. The divergence of Duffing system phase
trajectories is investigated with influences of different periodic signals under low signal-to-noise ratio values.
The estimation of phase trajectories divergence is performed with using of numeric integration. The signal
detection method is analyzed with different forms of input signal: sinusoidal, square, triangle. The analysis
shows that a reliable detection of periodic signal can be performed for any of the three presented forms of
signal with repeating frequency near the frequency of the driving signal. The obtained results show wide
capabilities of Duffing system applications for detection of weak periodic signals.
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Introduction

At the present time the number of radio electronic
devices increases [1-3]. This leads to strict requi-
rements to noise immunity and sensitivity of new
communication devices [4-6].

Now, there is a wide variety of methods that are
used for realization of communication devices with high
noise immunity on the base of linear and nonlinear
filtering methods [1,2,4, 5].

The efficiency of linear filtering [7,8] is limited by
superposition principle which leads to the constant
proportion between signal and noise at each frequency
considered separately The nonlinear signal processi-
ng methods have much greater capabilities [9-12] but
they require more complicated mathematical models
and algorithms for avoiding the nonlinear distorti-
ons [9,13,14].

One of the main parts of digital signal reception
process is the determining whether high or low logical
level is present at the input of signal processing devi-
ce [1,15,16]. Thus the development of efficient signal
detection methods is necessary for the design of new
digital electronics and communication systems with
high noise immunity.

During the last 20 years the novel methods of
periodic signal detection are developed on the base of
chaotic dynamics theory [17]. These methods are based
on chaotic system sensitivity to initial conditions and
low-energy influences [18-21].

There are known chaos-based methods of signal
detection with using of different chaotic systems (Duffi-
ng Chua [22], Lorenz [23] and other systems [24-27]).

The most of known chaos based signal detection
methods use the transition between chaotic state and
periodic state for indication of presence or absence of
signal with required parameters [25,27-30]. The main
disadvantage of such methods is the need to provide
the state closed to critical.

The critical state of chaotic system is situated
between chaotic and periodic states [30, 31]. It
corresponds to very small ranges of driving signal
parameters, such as amplitude, frequency and phase.
Thus small signals can drive chaotic system oscillati-
ons out of critical state and decrease the sensitivity
dramatically.

By the other side, if the chaotic system state
changed to periodic, then its sensitivity to weak signals
becomes lower.

The described problems do not allow wide practical
applications of chaos-based signal detection methods.

Therefore, the development of signal detection
methods on the base of chaotic oscillations analysis
without state transition is an important problem of
chaos-based signal processing [32]. For this purpose
the Duffing system is selected in accordance with its
relatively simple structure and double-well potential
that allows to obtain a high sensitivity to weak signals.
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1 The chaotic dynamics of Duffi-
ng system

The Duffing system is characterized by the presence
of chaotic and periodic states that depend on the
parameters of external influences [31].

A generalized form of Duffing system model is
described by differential equation (1):

a-2"(t)+b-2'(t)+c-F(d-z(t) =st), (1)
where s(t) is the input signal; x(t) is the output signal;
F (z) is a nonlinear function that provides double-
well potential. In this article we consider the function
F(z) =2 —x.

The Duffing system is excited by signal s(t) that
consists of two components:

s(t) = so(t) + g(t), (2)
where s¢(t) = Apsin(wt) is the driving signal that
provides the required oscillation mode; g(t) is the input
signal that consists of useful information signal sin¢(t)
and noise n(t):

g(t) = sine(t) +n(t). (3)
In this work the information signal is considered
as a periodic signal with amplitude A, and repeating
frequency w. The noise is a random value with uniform
distribution.
The coefficients a, b, ¢, d determine the oscillation
damping and scaling by frequency and amplitude:

a=1/w, b=k/w, )

C:Bset /B()7 d:BO/Bset7
where w is the cyclic frequency of driving signal; k is the
damping coefficient; By is the driving signal amplitude
under ¢ = d = 1; Byt is the established amplitude of
driving signal. The values of By and Bg.; determine
the range of output signal amplitude.

Thus, we can obtain Duffing system models, which
can provide the same form of phase portrait at di-
flerent frequencies with different amplitudes of input
and output signals.

In this article the Duffing system dynamics is
analyzed with parameters: w = 1; k = 0.5; ¢ = 1;
d=1; Ay = 0.41.

But the model can be easily rescaled to any different
frequency and amplitude by changing of the coefficients
a, b, ¢, d. The differential equation (1) is solved numeri-
cally with using of trapezoidal integration method.

An example of Duffing system chaotic oscillati-
ons (1) is shown in Fig. 1.
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Fig. 1. Chaotic oscillations of Duffing system

The shown chaotic oscillations of Duffing system
strongly depend on the parameters of input signal s(t).
A small changing of input signal parameters can cause
significant changing of output signal after some time.

2 The divergence of Duffi-
ng system phase trajectories
under the influence of periodic
signals

The phase plane representation of chaotic osci-
llations is convenient for analysis of Duffing system

response to weak signals [23, 31, 32].

The typical phase portrait of Duffing system chaotic
oscillations is shown in Fig. 2.
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Fig. 2. A typical phase portrait of Duffing system
chaotic oscillations

As it is shown in Fig. 2, the phase trajectories di-
verge with time. The difference between Duffing system
phase trajectories can be caused by weak signals wi-
th periodic components at the frequency of driving
signal [32].

For example, the process of phase trajectories di-
vergence is shown in Fig. 3 for changing of driving
signal amplitude Ay = 0.41 by small value AA =
4 -107%. The time of divergence is 15 - T (noted by
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points in Fig. 3), where T' = 2 - w/w is the period of
driving signal s¢(t).
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Fig. 3. Divergence of Duffing system phase trajectories
without input noise

The phase trajectories diverge along the Poincare
section of Duffing system phase portrait. The Poincare
section is a set of points (x(m - T, o), '(m-T,po))
selected with one driving signal period T and initial
phase ¢y, where m =0,1,2,3,..., M.

Fig. 4 shows the divergence of phase trajectories for
the same amplitudes Ag, Ag — AA, Ag + AA and the
same time 15 - T under the presence of strong noise.

The noise is an aperiodic random waveform with
uniform distribution. The noise level is characterized
by signal-to-noise ratio (5) in the frequency range
wp, € [0.7w; 1.3w].

SNR = 20log,,

In Fig. 4, the three phase trajectories are obtained
under the same noise level with SNR = —21dB.
The SNR value is estimated by expression (5) for
harmonic input signal with AA amplitude (sins(t) =
AA - sin(wt)).
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Fig. 4. Divergence of Duffing system phase trajectories
with SNR = —21dB at the input

Fig. 4 shows that noise does not change the di-
rection of phase trajectory shifts along Poincare section
caused by changing of periodic component amplitude.

The nature of Duffing system sensitivity to weak
periodic signals is shown in Fig. 5.
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Fig. 5. The dependence between periodic signal ampli-
tude oscillation mode: 1, 3 — periodic states; 2 —
chaotic state; dashed lines — critical states

Fig. 5 shows that if amplitude of input signal peri-
odic component is in the range [0; 1], then Duffing
system can be in chaotic or periodic state. The periodic
states appear when Ay < 0.375 or Ag > 0.754. If
Ap € [0.375; 0.754], then Duffing system is in chaotic
state.

As it is shown in Fig. 5, in periodic states the sensi-
tivity of Duffing system to weak signals is low, such
as at different Ay values the output signal oscillation
forms are almost the same. In chaotic state a small
change of periodic component can lead to significant
change of output signal form.

Thus the design of methods and algorithms for
estimation of noisy signal parameters with analysis
of Duffing system response divergences can allow to
realize the signal reception under low SNR values.

3 Periodic signal detection based
on the estimation of phase
trajectories divergence

As it is shown in Fig. 3 and Fig. 4, the Duffing
system phase trajectories diverge along the Poincare
section under small changes of input signal periodic
component.

For convenient expression of phase trajectories di-
vergence estimation we perform the next replacements:

y(t) =2/ (1), (6)

g(t) =A- gn(t)v (7)
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where 2/(t) is the derivative of output signal; g,,(¢) is
the normalized input signal:

Therefore, the divergence of Duffing system phase
trajectories under influence of input signal g(¢) can be
estimated by expression:

= [ () (S o

The estimation of phase trajectories divergence is
performed for three different periodic signals:
— sinusoidal signal:

Sint(t) = As - sin(wt); (10)

— square signal:

Agte [mT; (m+ %) T] ,

Sing(t) = {—As,t c [(m—i— %) T, (m+1)T] ; (1)

— triangle signal:

Sing(t) = As - %arcsin (sin(wt)) . (12)

The values of phase trajectories divergence esti-
mation L are calculated with using of trapezoidal
integration method.

The results of estimation of Duffing system phase
trajectories divergence are shown in Fig. 6 under the
influence of sinusoidal, square and triangle signals for
the time 22 - T.
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Fig. 6. The dependence between periodic signal ampli-
tude and divergence of phase trajectories

Fig. 6 shows that if the amplitude of input si-
gnal periodic component is greater than 7 - 1078,
then after 22 periods of driving signal the phase
trajectory divergence estimation L is much greater
than under aperiodic noise influence only. The regi-
on that corresponds to phase trajectories divergence
caused by noise is shown in grey color.

The corresponding values of SNR, are presented in
Fig. 7.
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Fig. 7. SNR values for the presented amplitudes of
periodic signals

So, we can detect periodic signals with repeating
frequencies near the driving signal frequency w with
using of the expressions:

Hol
Hll

L < Lipr,

(13)
L P Lthr2a
where Hj is the hypothesis of signal absence; Hj is
the hypothesis of signal presence; Lip,1 and Lipqo the
lower and upper threshold values of the divergence
estimation L correspondingly. The threshold values can
be defined in accordance with the statistical methods
used for making the decisions between hypotheses H
and Hl-

4 Discussion

The presented analysis of dependence between
amplitude of input signal periodic components and
Duffing system phase trajectories divergence shows
that the described chaotic system has great capabilities
of application for signal detection purposes.

The presented results (Fig. 6, Fig. 7) demonstrate
that Duffing system phase trajectories divergence
increases significantly under weak periodic influences
at the frequency of driving signal. The corresponding
divergence of phase trajectories under noise influence
is much less. For example, the noise with low level
of periodic components (SNR = —60 dB) causes the
maximum estimated divergence only L = 122, while we
obtain L = 213 under the influence of periodic signal
with SNR = —44 dB. Thus, we can establish a reliable
threshold value of L for detection of periodic signals.

Also, the phase trajectories divergence depends on
the form of periodic signal. So the square waveform
causes the maximum divergence and triangle waveform
causes the minimum divergence. The dependence
between phase trajectories divergence and the form of
periodic signal requires additional investigations. Such
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dependence is related to energy of periodic signals at
the driving signal frequency.

For digital signal reception applications, the
development of new methods is required for analysis
of the phase trajectories divergence estimation L
that changes with time, amplitude and form of peri-
odic signals. The presented estimation approach can
be used in program realization of signal detection
methods based on discrete Duffing system modeling.
For hardware realization the fast estimation methods
are required.

Thus the future works of authors are concentrated
on the development of discrete phase trajectories di-
vergence estimation methods.

Conclusions

This article presents the analysis of periodic si-
gnal detection method based on Duffing system chaotic
dynamics.

The obtained results show that accurate estimati-
on of Duffing system phase trajectories divergence
allows to detect periodic signals under low SNR values.
The presented results show the capabilities of signal
detection under SNR = —44 dB and higher in the
frequency range [0.7w; 1.3w], where w is the driving
signal frequency.

The advantage of the presented method is that the
divergence of phase trajectories is not limited by Duffi-
ng system output signal dynamic range in accordance
with the fractal geometry of its Poincare section that
changes with time.

One of the most important directions for future
development of chaos-based signal detection methods
is the design of efficient digital estimators of phase
trajectories divergence.
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Amnaniz MeToy BUSBJIEHHS NEPIOAMYHUX
CUTHAJIIB HA OCHOBi XaOTMYHOI OMHAMIKNI

cucremu lyddinra

Mapmumwox B. B., I'nepuaxo €. B., Botixo 0. M.,
Dedyaa M. B.

Y cTarTi 3ampONOHOBAHO AHAI3 METOLY BUABJICHHS
MEePIOJUIHNX CUTHAJIB, SKUil 0a3yEThCH HA Uy T/IMBOCTI CH-
cremu yddinra g0 c1abkux BILIUBIB.

IIporiec BusAB/IEHHS TEPIOAMYIHUX CUTHAJIB € OJHIEIO 13
HaNBaK/IMBIMUX 33[a9 Cy9IACHOI PATIOTEXHIKM Ta 3B’SA3KY.
3okpema, 4yTiuBiCTH 1 3aBaOCTIfKICTh B LpPOLIEC] BUSAB-
JICHHSI TIEPIOJWYHUX CUTHAJIB CYTTEBO BIJIMBAE HA AKICTH
mpuiiomy 1 OPBUX CUTHAIIB i3 aMILIITYIHOIO, YACTOTHOIO
Ta (a30BOI0 MAHIIYJIAIIEO.

Hampukinmi XX ct. 6ys10 po3po6/ieH0 HOBY IPYILy MeTO-
iB BUABJIEHHS ITEPIOIUYHUX CUTHAJIB Ha OCHOBI BJIACTUBO-
crell 9yIIMBOCTI XAOTHYIHMX CHACTEM [0 CJIA0KUX Iepiomu-
YHUX BIIUBIB 33 YMOBH HAagBHOCTI BXiJTHHX HIyMiB.

Bisbmiicts BimoMux MeTOMIB BUSBJ/IEHHS TEPIOTUIHUX
CHATHAJIB 13 3aCTOCYBAHHSAM XAOTHYIHUX CHCTEM 3aCHOBAHI

Ha imenTudikarmil mepexomay KOJIUBAaHb i3 XAOTHIHOTO PEXKU-
My B IEPIOAMYHMI PEXKUM BHACILIOK 301IBIIEHHST aMILTITY
NepioaN<HUX CKJIAJ0BUX BXIJHOIO CHTHAJIy HA TACTOTAX,
OIM3BKUX S0 9aCTOTU 33/IAI0YUOT0 CUTHAJTY.

IlepeBaroio npuBeseHOr0 METOMY BUSBJIEHHS IIE€PiOIHU-
YHUX CUTHAJIB € BUKOpucTauus cucremu /lyddinra y xao-
TUYIHOMY PexuMi, 6e3 mepexo/IiB A0 MePIOAUIHOTO PEKUMY,
B AKOMY CIIOCTEDIra€ThCH 3HAYHO HIKYA Iy TJIHBICTH 0
CIA0KUX MEePIOAUIHNAX KOJIMBAHDb BXIJHOIO CUTHAJLY.

Ormcanwmit y crarTi MeTon 0a3yeThbCs HA TOMY, IO
OpHU PI3HUX aMIUITYZaX MEePIOAWYIHUAX CKJIAJOBUX BXIIHO-
ro curnamy cuctemn [lyddinra i1 ¢aszosi TpaekTopii y
XaOTHYIHOMY DPeXKHMi PO3XOAAThbCA 3 PI3HOI0 MIBHAKICTIO.
IIpuBeneno dopmysry m/ist OIiHKYA BEIUYIUHN PO3XOI2KEHHS
Ga30BuUX TPAEKTODIIL.

JlocIiIPKeHo TTpoTec pO3XO/IKeHHs (pa30BUX TPAEKTO-
piit cuctemu dyddinra npu pizanx dopmax mepiogmanmnx
CUTHAJIB HA BXOai. 30KpeMa, HABEIEHO AHAJI3 TPOIECiB
PO3XOmKeHHs (PA30BUX TPAECKTOPiil BHAC/IIOK BILIUBY CH-
HyCOIJaJIbHOTO, TMPAMOKYTHOTO Ta TPHUKYTHOTO CHUTHAJIB.
Bka3zamo MeToguKy po3paxyHKY 3HaUYeHb KOeDIIie€HTIB piB-
asaaaa lyddinra, Heobximamx s peastizamii XaoTHIHUX
PeXKUMIB KOJMBAHD [JIs PI3HUX aMILITY/I I 9aCTOT 3aaf0-
YOT0 CUTHAJIY.

Pesynabratn amaiizy mokasyioTh MOXKJIMBOCTI BUSBJICH-
Hsl TIEPIOAUIHUX CUTHAJIB Pi3HUX (POPM i3 4aCTOTOIO ITOBTO-
penns:, OJIM3bKOIO 10 9ACTOTU 33JAI0Y0T0 CUIHAJLY, 33 YMOB
HU3bKWUX 3HAYEHb BiJHOUIEHHS CUTHAJ/IIyM HA BXOZ].

OTpuMaHni pe3yabTaTh MOKa3yIOTh MIUPOKI MOXKJINBOCTI
3actocyBannd cuctemu dyddinra mis Busgsienas ciabrux
TePIOANTHUX CUTHAJIIB.

Ka104061 cro6a: BUABIEHHsI CTaOKUX CATHAJIB; Xa0TH-
YHI CHCTEMU; BiIHOTIEHHS CUTHAJI-TIyM; (ha30BUil TTOPTPET

Ananu3 Metona obOHapy>KeHUs Tepuoan-
YeCKMX CHUTHAJIOB HA OCHOBE XaoTUde-
ckoii muHamuku cucremsbl Jlydpdunra

Mapmuwwiox B. B., TI'nepuaxo E. B., Botixo I0. H.,
Dedyra M. B.

B crarbe mpemioxkeH aHaIN3 METOJa OOHAPYKEHUS TIe-
PUOIUYIECKUX CHUTHAJIOB, 0a3WPYOMUNCT HA IYBCTBUTEIIb-
soctu cucremsl lyddunra k crabbiM BO3aelCcTBUAM.

Metoz o0HApPYKEHMsST CUTHAJIOB PAa3pabOTaH C MCIOJIb-
3oBanueM cuctembl Jyddurra B xaoTuueckoM pexmume 6e3
epexo/I0B B IepuogmdecKuii pexxumM. [1aBHoe mpemmymie-
CTBO METONA — OTCYTCTBHE IIEPEXOJ0B B IEPHOIMIECKUe
PEXXUMBI C HU3KOU TyBCTBUTEIBHOCTHIO.

UccrenoBanbl mponeccsl pacxoxkieHus (pa30BbIX Tpa-
€KTODPUIl PN PA3HBIX MEPUOJNIECKUX CUTHAJIAX HA BXOIE
(cumycomma bHBLA, TPAMOYTOJIBHBIN, TPEYTONbHBIIA).

PesysibTaTsl aHamm3a MOKa3bIBAIOT BO3MOXKHOCTHA O0HA-
PyZK€Hus [MePUOAUIECKUX CUIHAJIOB C YACTOTOU IOBTODE-
HUs, OJIM3KOM K 9acTOTe 33JAI0MIero CUrHAJIA, IPU HU3KUX
3HAYEHUAX OTHOUIEHUSAX CUTHAJI/ILyM.

Ilosygennsie pe3ysnbTaThl MOKA3BIBAIOT IMHPOKHUE BO-
3MOXKHOCTH TIpuUMeHeHnsi cucteMmbl yddurna gms obma-
py2KeHusi CJIa0bIX IIEPUOAMIECKUX CUTHAJIOB.

Karoweswie cnosa: obHapy keHne caaboro CUrHAIA; Xa-
OTUYIECKNEe CHCTEMbBI; OTHOIIEHHEe CHTHAJ HIyM; (a30BBIil
noprTper
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