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The work is devoted to the estimate accuracy comparative analysis of the experimental data parameters with
exponential power distribution (EPD) using the classical Maximum Likelihood Estimation (MLE) and the
original Polynomial Maximization Method (PMM). In contrast to the parametric approach of MLE, which
uses the description in the form of probability density distribution, PMM is based on a partial description in
the of higher-order statistics form and the mathematical apparatus of Kunchenko’s stochastic polynomials.
An algorithm for finding PMM estimates using 3rd order stochastic polynomials is presented. Analytical
expressions allowing to determine the variance of PMM-estimates of the asymptotic case parameters and
EPD parameters with a priori information are obtained. It is shown that the relative theoretical estimates
accuracy of different methods significantly depends on the EPD shape parameter and matches only for
a separate case of Gaussian distribution. The effectiveness of different approaches (including valuation of
mean values estimates) both with and without a priori information on EPD properties was investigated by
repeated statistical tests (through Monte Carlo Method). The greatest efficiency areas for each of methods
depending on EPD shape parameter and sample data volume are constructed.
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Intro

Current information and measurement technologies
trends are focused on the use and software systems
development that will provide a solution to the problem
of statistical processing the experimental results in
any form of recorded measurements and necessarily
includes modern statistical analysis methods. They
may solve a wide range of measurement problems,
but also should be used properly when applied for
researching, like in case of using a model that includes
the additive interaction of the measured parameter and
random error [1].

It is well known that random measuring
instruments errors comply with the normal (Gaussian)
law seldom [2]. Moreover, the basis of measuring
instruments and systems are different physical prin-
ciples, different measurement methods and different
measuring signals transformations. And in fact,
measurement errors are the result of many factors
that influence, both random and non-random, acting
constantly or periodically. Therefore, it is clear that

only if certain preconditions (theoretical and technical)
have place — measurement errors are enough described
by the normal distribution law [3].

EPD is offered as an alternative to the Gaussi-
an distribution law assumption for measurement error
probability while the model of exponential power di-
stribution is applied [4]. And since the distribution of
experimental data is usually symmetric according to
its center, the exponential power distribution can be
claimed as a model of error measurement distribution
law.

A typical view of the EPD model is described by a
species function:

w(zx)
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where o — scale parameter, p — shape parameter.

The EPD usage is substantiated as a model for error
measurement probability distribution [5,6], to describe
the probabilistic characteristics of random noise whi-
le video and audio signals processing [7], biomedical
research statistics [8], risk management [9], etc. The
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great advantage of this model is that it can describe
random variables that have both positive (flat-peak
distributions) and negative (acute-peak distributions)
kurtosis coefficient [6, 10]. And such models are in
demand in many fields of science and technology. In
addition, EPD model modifications for asymmetri-
cally distributed random variables have already been
developed [11-14].

1 Purpose of research

As a detailed analysis of works [1,2,15,16] shows,
due to the simplicity of their calculation simple stati-
stical characteristics are used for getting the center
coordinate of symmetrically distributed experimental
data estimates. Incidentally, with certain predetermi-
ned requirements for the accuracy of obtaining esti-
mates, such simple estimates may not be sufficiently
accurate. Turning to the description of random vari-
ables using the probability density distribution, we
actually have at present the use of the most accurate
method for obtaining estimates — the method of maxi-
mum likelihood. But this approach produces problems
associated with nonlinearity of processing [9, 11, 12].
The most complicated thing here is related to the
practical application of numerical methods to solve
nonlinear equations [13,14,17].

Thus, the researcher is often faced with the task
of choosing either a simpler method, which may not
satisfy the accuracy, or cumbersome calculations that
require the implementation of complex computational
procedures.

To solve this dilemma this paper proposes to apply
an original approach to statistical parameter estimati-
on, which is based on the polynomial maximization
method (PMM) by describing random variables in the
form of a finite moments or cumulants number [18].

In [19] was developed an algorithm for finding esti-
mates for multiple measurements results on random
errors background that are described by the EPD
model; besides comparative analysis of the PMM
estimates accuracy with estimates based on three
nonparametric statistics: median, mean, mid-range.
The purpose of this study is a comparative analysis
of PMM estimates accuracy and parametric maximum
likelihood estimates (MLE).

The analysis procedure involves obtaining both:
theoretical expressionsfor parameters estimates vari-
ance ratio and the comparison of estimates variances
empirical values using statistical modeling by the
Monte Carlo method.

2 Mathematical problem
statement

Supposing 6§ — is informative parameter, the value
of which must be estimated on basis of set of values

Z = {x1,2a,...,2,} analysis. This vector contains
independent and equally distributed sample values of
the measurement model z = 6 + £, where £ — random
error, which is adequately described by the exponential
power distribution of the form (1).

It is necessary to determine the accuracy
(parameter estimates variance) of different estimation
methods, as well as to assess the relative accuracy
impact of the sample size and whether there is a priori
information about the EPD model parameters.

3 Finding estimates using the
polynomial
method

maximization

As shown in [19-22], the application of the
polynomial maximization method is based on finding
the functional extremum in the form of a stochastic
functional polynomial of a certain r order. When using
basic power transformations to form such a polynomi-
al, a description in the form of a finite sequence of
moments or cumulants up to the 2r order must be
used. This polynomial is formed in a way that provides
an extremum (maximum) in the true value vicinity of
various evaluated parameter 6. Thus, finding the desi-
red parameter estimates is reduced to finding the root
of the function l,., (6), that is formed as a derivative
of the corresponding parameter and depends on the
sample values of ¥ = {z1,22,..., 2, }:

L (0) =Y hi (0) [711 > al—a; (9)]
i=1 v=1

=0, (2

0=0

where o; () = E {z'} — mean values which are the
initial points depending on the estimated parameter.

In fact, the function I, () is also the sum of
differences r of theoretical and sample moments, consi-
dered by certain coefficients h; (8). These coefficients
can be found as the solution of a linear algebraic set
of equations shown below. This set is based on the
minimum variance ensuring criterion of the desired
parameter 0 estimates when the r degree of polynomial
is used:

r d ,
Zhi (0) Fi; (0) = @O‘j 0), j=1r,
i=1

where the centered correlants F;; (6) =
..
a; (0) o (0); 4,5 =1,r.

In [19] it was shown that finding the 6 parameter
estimates using a symmetric error distribution model
requires polynomial degree r = 3 to be the least as
possible.

The correlations for the first 6 initial moments
required for the formation of the set of equations (3)

Qitj 0) -
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have the form:

a1 =10, ag =02+ po, az = 6%+ 304,

ay = 0% +66% g + 313 + 4,

as = 0° +100% 1y + 15043 + 5014,

g = 0% + 150" 1o + 4567 3 + 1505 + 15602 juy+
+ 15papa + ps,

(4)

where u; — the central moments of the distribution (1),
depending only on the parameters of scale o and shape

To find the optimal coefficients that minimize the
variance of PMM estimates, expressions for derivatives
from the first 3 moments should be calculated:

0

%Ofl 1

9 =20+ 12 (6)
00 ’

0

@0&3 =30 + 3.

)

p [17]: Via analytical solution of the set of equations (3)
L _ by the Cramer method (taking into account expressions
i+1 1\ 72 ./3\ ?, (4) and (6)), the optimal coefficients expressions for the
pi =T P r P r p g (5) power stochastic polynomial are obtained:
T(Ep1) (96°T(3p )" = 3(6% + o*)T(p )T By I(5p™Y) + 0*T(p 1) T(7p 7))
hy =—
pT(p=1)* (D5~ — T(3p- )T (Tp 1))
L 30’ (S3rer )’ 4 e re )
g = —
w3 (p=1)?* (F(5p‘ ) =T (3p~1)T )
r(3p~")* (—3F(3p‘1) +T(p )
hs =
pAT (1) (D5~ ~ T(3p~ )T (7p- >)
The equation of polynomial degree r = 3 maxi- When using a probabilistic model of the form (1), as

mization for finding PMM estimates g for the case
of symmetrically distributed experimental data can be
represented as:

n

hlz(xv—9>+h2§n: (25 = (0% + p2) ]+

n
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v=1

=0. (8)
0=0
Substituting the values of the found optimal coeffi-
cients (7) in equation (8), we obtain directly the
expression for estimating the desired parameter of the

distribution center 6 [19].

4 Polynomial maximization
method estimates accuracy

It is known that the main statistical estimation
methods accuracy criterion is the variance value of
the resulting parameter estimates. One of the ways
to obtain analytical expressions describing the method
of maximum likelihood estimates variance is to use
the apparatus of quantitative information according to

Fisher 52 Ini(0 3
_ 1 , 0, D
1o = - | S0 2], )

where [(0,0,p) — logarithm of the likelihood function,
0 — desired parameter of the distribution center, o —
scale parameter , p — shape parameter.

shown in [17], the logarithm of the likelihood function
is described by the function:
1(0,0,p) =InL(0,0,p) =

> i — 0]

=-—nln 20p1/pF(1 + l/p)} P (10)

po?

The variance estimates for the asymptotic case
(atn — o) can be found as the inverse of the Fisher
information. Thus, using (9) and (10) allows to obtain
an analytical expression:

-~

— 2 _
var (0) = 0()MLE =

ri+1/p°® o°
I'(2-1/p)-T'@3/p) n

In [18] it was shown that for the polynomial maxi-
mization method a certain analogue of the amount of
Fisher information is the so-called amount of obtai-
ned information about the parameter estimated using
the stochastic polynomial degree r, which is generally
described by the expression:

(11)

d 2 &
Sty = B [ 351en O)] =Bt (®). (12
In addition, it is proved that in the asymptotic case
(at » — o0) the amount of extracted information goes
to the amount of Fisher information.
After certain basic power transformations, the
expression for the amount of information obtained
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about the parameter 6 can be represented as:

d2
Jrn(é) = _Ewlrn (0) =

=n_ D hiOhi(O)Fi;0) =n} hi(é’)d%ai(ﬁ).

(13)

This quantitative characteristic has statistical
properties similar to Fisher’s information. That is,
in the asymptotic case (at n — oo) the variance of
PMM-estimates is defined as the inverse of the amount
obtained at the r degree of information, i.e.:

olgye = lim J 7N (14)

T [37] (or[3p~1)* — 61 [p~] T [3p71] T [5p71] + T [p~)°T [7p71])

For a comparative analysis of the estimates relati-
ve accuracy, let us use the concept of the variance
coefficient [19-22]:

_ 0(29) PMM
georr =z -
(0) MLE

(15)

The obtained coefficient is the ratio of the PMM
parameter estimates variance # when the polynomi-
al r-th degree is used and the variance of the PMM
estimates.

Using form (13), it is easy to determine an analyti-
cal expression for the amount of information obtained
through the EPD shape parameter p

o*Tlp']* (Tl5p-

P =T 3= T [7p7])

(16)

Thus, for the asymptotic case (at m — o) expression (16) allows to theoretically determine the PMM

estimates variance at the r = 3 polynomial degree:

o0 [p 1] (T[sp!]” ~ T [3p1] T [77] )

2 _
OpMM =

It is also known [3] that the parameter estimates
variance in the form of the arithmetic meandepends
only on the random component variance and the
sample values volume:

oM = — - (18)

Using expressions (11) and (18), it isn’t hard to
obtain the variance reduction coefficient of the PMM-
estimates compared to the arithmetic mean estimates:

T[1+p~1)?
L2—p 1T [3p~1]°

(19)

s}
<
=
o]

I

Using expressions (17-19), graphs can be presented
(see Fig. 1) showing the dependence of the MLE
relative accuracy and PMM estimates compared with
the arithmetic mean estimates of the EPD shape
parameter.

rlt+p71" (9r[3p )"~ o [p

nl (3p=1] (9T(3p "] — 60 [p1 D [3p~1 D [5p~"] + Tlp~PT [7p])

3] [sp ] 4 T r (1)

(17)
g
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Fig. 1. Dependency of variance reduction coeffici-

ents gP]\/IM/]\/IM and gMLE/M]\/[ with EPD shape
parameter p.

Using expressions (17) and (19) it is also easy to
obtain a function (the graph of which is presented in
Fig. 2), which makes it possible to directly compare the
accuracy (magnitude of asymptotic variances) of MLE
and PMM-estimates:

gMLE = —
PMM

P2 —p~ T~ (T~ 1* =T 3p~ T (7]

(20)

Obviously, the magnitude of different methods relative efficiency depends solely on the EPD shape

parameter p.
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9 set of functions for the generating statistical evaluation
1.0} B Rt L R LT PP by maximum likelihood method and visualization of
S T random EPD variables [17].
o8t Empirical values of the coefficients of the parameter
..' estimates variance were used as quantitative criteria
06f characterizing the different methods efficiency:
L]
0.4 ! 6(20)PMM3 &(ZG)MLE
e eme=es gmE b = 3o o =
: PMM 903 = 52 v 4(6)3 = =3 )
: 0)MEAN 0) MEAN
oz} ! (0) A (0) (21)
; )y PMM3
. "(0)38 =752 J
1 2 3 4 5 6 7 8 © (6) MLE
Fig. 2. Dependency of variance reduction coefficient where 6(20) MEAN> &(29) MLE> &(29 puas — based on

gmre/pmym With EPD shape parameter p.

Analyzing the dependencies shown in Fig. 1 and
Fig. 2, it should be noted that for a sufficiently wide
range of shape parameter values p € (2;5) the theoreti-
cal efficiency of MLE and PMM estimates actually
matches. For sharp-topped distributions at p < 2
the MLE efficiency can be essentially higher. Also
at increase p > 5, i.e. at essentially flat-topped (in
asymptotics uniform) distribution the related efficiency
of PMM-estimations increases too.

At the end of this analysis it is necessary to
emphasize once again that it was obtained the theoreti-
cal expressions of estimates variances ratio (19-20)
and built on Fig. 1 and Fig. 2 corresponding graphs
depending on the presence of a priori information
about the probabilities of measurement errors, i.e. EPD
parameter valuestype (1).

5 Statistical modeling

To experimentally verify the obtained theoretical
results of the different evaluation methods effectiveness
analysis, statistical modeling by the Monte Carlo
Method was implemented. For the statistical modeling
implementation programming language R is used. This
choice was made due its free distribution, as well as the
presence of a large number of libraries focused on the
tasks of statistical data analysis. Among them is the
software module normalp package, which contains a

m experiments obtained using the arithmetic mean,
MLE and PMM (at r = 3) estimates variance value,
respectively.

The experiment was carried out depending on
presence or absence of a priori information about
measurement errors probability. For the second case,
instead of a priori information posteriori model
parameters estimates values (1) (required for the maxi-
mum likelihood method) and estimates of central
moments of 2,4 and 6-th degrees (required for the
polynomial maximization method) were used. It is
obvious that the reliability of the simulation results was
also significantly influenced by the amount of sample
data n and the number of experiments m.

The set of results of statistical modeling for dif-
ferent values of the EPD shape parameter (p = 1+ 10)
and the sample values volumes (n = 20 + 200), obtai-
ned by repeated m = 10* experiments are presented
in Tab. 1 (with presence of a priori information) and
Tab. 2 (with absence of a priori information).

The theoretical and experimental values analysis
of the estimates variance coefficients ratio shows
that there is a certain correlation between analytical
calculations and results obtained by statistical model-
ing. The emergence of the difference (as noted earlier)
is due to the fact that the expressions describing the
variances of the MLE and PMM-estimates obtained for
the asymptotic case (at n — c0). Tab. 1 data confirms
that with increasing sample size, the difference between
theoretical and experimental data decreases.

Tab. 1 Estimates variance coefficients with presence of a priori information

Statistical modeling results
p 903 Q)3 UOE!
n 93 n 9(0)3 n T(0)3
20 50 | 100 | 200 20 50 | 100 | 200 20 50 | 100 | 200

10 0.89 | 042 | 0.41 | 041 | 0.4 | 045 | 035 | 0.32 | 0.32 | 0.31] 2 1.2 | 1.26 | 1.27 | 1.28
) 0.69 | 0.64 | 0.61 | 0.62 | 0.61| 0.68 | 0.64 | 0.62 | 0.62 | 0.61] 1.01 1 1 1 1.02
3 09 | 09 089|089 |08 09 | 09 |0.89|089|088 1 1 1 1 1.01
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0.98 | 0.86 | 0.86 | 0.86 | 0.85| 0.66 | 0.61 | 0.57 | 0.56 | 0.5 | 1.49 | 1.43 | 1.5 | 1.53 | 1.71
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Tab. 2 Estimates variance coefficients with absence of a priori information
Statistical modeling results

P 9(0)3 ()3 WOE
n 9)3 n q(0)3 n T(0)3
20 50 100 | 200 20 50 100 | 200 20 50 100 | 200

10 0.65 | 0.50 | 0.44 | 0.42 | 0.4 | 091 | 0.57 | 0.49 | 0.48 | 0.31] 0.71 | 0.88 | 0.91 | 0.88 | 1.28

) 0.82 | 0.71 | 0.67 | 0.63 | 0.61] 1.09 | 0.85 | 0.80 | 0.74 | 0.61| 0.74 | 0.88 | 0.83 | 0.86 | 1.02

3 1.02 | 097 | 0.93 | 091 | 0.89| 1.26 | 1.11 | 0.99 | 0.94 | 0.88| 0.81 | 0.87 | 0.93 | 0.97 | 1.01

2 1.13 | 1,07 | 1.05 | 1.02 | 1 1.23 | 1,14 | 1.07 | 1.03 | 1 091 [ 093 | 098 | 097 | 1
1 0.96 | 0,83 | 0.80 | 0.83 | 0.85] 0.77 | 0,63 | 0.58 | 1.03 | 0.5 | 1.24 | 1.32 | 1.34 | 0.99 | 1.71

The experimental results also confirm the previ-
ously stated thesis that the accuracy of obtaining MLE
and PMM estimates is significantly affected by the
factor of presence / absence of a priori information
on the error model properties (exponential distribution
parameters for MLE and even central moments up to 6-
th degree for PMM). Tab. 2 data reflects the important
fact that in the absence of a priori information on
EPD properties for flat-top distributions (p > 2) the
efficiency of PMM estimates is mostly higher than the
MLE estimates. This can be explained by the fact that
upon these conditions the influence of the uncertainty
of the EPD shape parameter value on the MLE is more
significant than the influence of the uncertainty of the
central moments of the PMM. The relative decrease in
the variance of the MLE estimates (compared to the
PMM) depends on both the shape parameter and the
sample values volume. And it is especially significant
(up to 30%) with least samples and significant flatness.

Such results are especially important from a practi-
cal point of view, because the vast majority of
real situations lacks a priori information about the
true values ofrandom component model parameters
(measurement errors). Therefore, for such a situation
Fig. 3 shows the boundaries delimiting the areas of
greatest efficiency (based on the minimum variance
criterion) on different estimation methods background:
arithmetic mean, MLE and PMM. These areas were
also obtained by statistical modeling via Monte Carlo
method (for m = 10 experiments) at different values
of EPD shape parameter p and sample size n.

Based on the totality of the above results the
following conclusions can be drawn:

- in case of the normal (Gaussian) errors distributi-
on, the most effective (both in terms of accuracy and
ease of implementation) is the use of arithmetic mean
estimates;

- for sharp-topped distributions, the maximum li-
kelihood method is generally more effective, the appli-
cation of which requires large amount of sample data
(the boundary separating the efficiency areas depends
significantly on the sample values volume and is
parabolic);

- for flat-topped distributions, the polynomial maxi-
mization method is more effective (the boundary

separating the areas, although to a lesser extent, also
depends on the sample values volume).

MLEMEAN
MEAN/PMM3

0.5

n
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Fig. 3. Efficiency areas of methods for finding the center
coordinates of the symmetric exponential distributions
family

Conclusion

The obtained results are the second part that
completes the research initiated in [19] on the validity
of applying the polynomial maximization method for
finding the experimental data parameters estimates
with exponential power distribution.

The set of obtained results allows to position
the proposed approach as a compromise in terms of
the balance between simple estimates (mean, median
and mid-range) and potentially more accurate esti-
mates of maximum likelihood, the use of which requi-
res additional a priori information. In this context,
the advantages of using the polynomial maximization
method are:

- providing additional opportunities (compared
to simple non-parametric methods) to increase the
informative parameter estimates accuracy by taking
into account the measurement errors properties (a
posteriori values of the central moments);

- reducing the impact (compared to the parametric
maximum likelihood method) of the lack of a priori
information on the results of the informative parameter
estimates accuracy.
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The obtained efficiency areas of different methods
allow us to recommend their choice depending on the
probabilistic error model properties (the value of the
EPD shape parameter) and the experimental data
sample values amount.
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IMopiBHAABHUIT aHaMiI3 OI[IHOK METOIiB
MakKcuMizamil moJiHOMY Ta MAaKCHUMAaJb-
HOl MPaBIOMOAIOHOCTI A9 JAaHUX 3 €KC-
HOHEHIIMHNM CTEIMeHEBUM PO3MOAiJI0M

3abosromnit C. B., Yenunoza A. B., Yopnit A. M.,
Tonwapos A. B.

PoboTa mpucBsigvena mOpIiBHAIBHOMY aHAJI3y TOYHOCTI
OIIIHOK IapaMeTPiB €KCIePUMEHTAIbLHUX IJAHUX i3 €KCIIO-
mermjansanM crenenesuM posmoxainom (ECP), mo 3naxons-
THCH 13 3ACTOCYBAHHAM KJIACUYHOIO METO/Yy MAKCUMAJIbHOL
npasponoai6rocti (MMII) i opuriHAIBHOTO METOLY MaKCH-
mizanii moninomis (MMILt). Ha simminy Bim mapamerpn-
groro mizxoxy MMII, mo BUKOpHCTOBYE Oomuc y BHUIVISIL
migeHOCTI po3nomdity fimosipHOocTeit, MMIIn 6a3yerncst na
YaCTKOBOMY OIKCI y BUTJISI CTATUCTUK BUIIUX MOPSIKIB
i Mmaremarnm4aHOMY amapaTi croxacTudHux mosinomiB Kymn-
“eHKa.

Haseneno anropurm mns 3uaxomxkenas MMILi-ominok
i3 3aCcTOCYBaHHSAM CTOXACTUYIHHUX IIOJIHOMIB 3-T0 HODAIKY.
Orpumani aHagiTHYHI BUpa3W, 10 JO3BOJISIOTH BH3HAYTA-
tu aucaepcito MMILn-ominok mapamMerpiB i aCHMITTOTH-
YHOIO0 BHUIQJKY Ta [PHA HASBHOCTI ampiopmHoi indopmarii
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npo napamerpu ECP. Tlokazano, nio BimHOCHA TeopeTwudHa
TOYHICTH OIIIHOK PI3HUX METOIB CYTTEBO 3aJIEKUTH Bif
mapamerpa ¢popmu ECP i cmiBmamae swimre jisi OKpeMOro
BUIIAIKY TayCOBOTO PO3IIOJILITY.

[MlnsixomM 6araTopa3oBUX CTATUCTUYIHNX BUIPOOYBAHBb
(meromom Momntre-Kapso) mocmimxkeno edexkrusHicTh (32
KPHUTEPIEM BeJMYmMHU apcrepciii omiHok) pi3HMX migxoxis
(y ToMY UmMCIL OTIIHOK CEpPeTHHOTO 3HAYMEHHS ) TPH HAABHOCTL
Ta BizcyTHOCTI ampiopmoi imdopMmarii 1Moo BIaCTUBOCTEHR
ECP. ITobynoBano obiacri wHaiibiibmol edbekTuBHOCTI 1
KOYKHOTO i3 MEeTOMiB B 3aJI€’KHOCTI Bix mapamerpa ¢dopmu
ECP i o6¢csary BubipKOBUX JaHFX.

Ka104061 cA06a: €KCHOHEHIIWHUN CTeHeHeBUuil PO3Io-
J171; CTOXaCTUYHI TOJIIHOMH; CTATUCTUKY BUIIWX MOPSIKIB;
OITiHKa IapaMeTpa

CpaBHUTEJbHBIIT aHAJIN3 OIMEHOK MEeTO-
JIOB MaKCUMW3aIIuu MOJIMHOMA W MaKCH-
MAaJIBHOT'O ITPaABJONOA00US A1 JAHHBIX C
SKCIOHEHIINAJBHBIM CTENEHHBIM PacIiIpe-
JeJIeHneM

3abosromnuti C. B., Yenunoza A. B., Yopnui A. M.,
TI'onuapos A. B.

Pafora mocBAmEHa CPaBHUTEIBHOMY AHAIM3Y TOWHO-
CTH OIEHOK HapaMeTpPOB 3IKCIEPUMEHTAIbHBIX JAHHBIX C
9KCIIOHEHIMAIbHBIM CreneHHbiM pacupegesenuem (JCP),

KOTODbIEe HAXOIATCS C IPUMEHEHNEM KJIACCHIECKOTO METOIA
MaKCHMAaIbHOTO TipaBaornonobus (MMII) u opuruHAIHLHOTO
Merona Makcummsanun nojausoma (MMILn). B ormuane ot
napamerpudeckoro momaxoma MMII, koropsrit mcmosmb3yer
OTVCAHVE B BUJIE TIJIOTHOCTYU PACIIPE/IEICHIST BEPOSITHOCTEI,
MMIIn 6a3upyercs HA 9aCTHIHOM OIMCAHUU B BUIE CTa-
THUCTUK BBICHIAX IOPSIIKOB M MATEMATHIECKOM AIIapaTe
CTOXaCTUYIECKUX TOINHOMOB KyHWeHKO.

IIpuBenen anroputm mna waxoxaenus MMILa-omernok
C TPUMEHEHWEM CTOXACTUIECKUX IMOJMHOMOB 3-TO TOPSI-
ka. [losrygensl anauTUYeCKUe BBIPAKEHNUs, IIO3BOJIAIONINE
ompenendars aucnepcuio MMIIn-oneHok mapameTrpoB id
ACHMITTOTHYECKOTO CJIydas W TPU HAJAYIWH ATPUOPHOMN
undopmanuu o napamerpax DCP. ITokaszano, uro orHO-
CUTEJbHAS TEOPETUHIeCKas TOYHOCTH OIEHOK PA3JIMIHBIX
METOJIOB CyIECTBEHHO 3aBUCHUT OT napamerpa dhopmbl DCP
¥ COBIIAJAET TOJIBKO I 9aCTHOTO CJIy4as rayccoBa pPac-
TIPEe/TeTICHMSI.

IIyreM MHOTOKpDATHBIX CTATHCTHYECKUX WCIIBITAHUM
(merogom Monte-Kapso) uccnenosana 3¢ dexTuBrOCTD
(IO KpUTEPHIO BEIMYMHBI AUCTIEPCHI OIEHOK) Pa3JIMTHBIX
MOAX00B (B TOM 9HCJ/IE€ ONEHOK CPEJHEr0 3HAYEHWs) IIPU
HAJIM9UH W OTCYTCTBUU AIPHUOPHON mubOpManum O CBOH-
crBax DCP. ITocrpoenst obmactu Hanbosbieir 3¢ dexTus-
HOCTH ISl KaXKJIOTO M3 METOJ0B B 3aBHUCUMOCTH OT IIapa-
merpa dbopmbl DCP u 06bema BHIOOPOUHBIX [TAHHBIX.

Karoweewie ca06a: IKCIOHEHIMAIBHOE CTEIIEHHOE pa-

cupefesieHne; CTOXaCTHYIeCKHe IIOJIMHOMBI; CTATUCTUKHI
BBICHINX HOPAIKOB; OIleHKa lIapamerpa
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