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This paper will review the procedure and the results of the research conducted on developing mathematical
models of cylindrical piezoelectric transducers that are extensively applied in electrical acoustics and hydro
acoustics (for example, in devices designed for radiating and receiving acoustic oscillations in air or water
medium). The distinctive feature of the developed models lies in the fact that the dependences established
are a mathematical description of the electroacoustic connection between the wave fields located in different
parts of a hollow piezoceramic cylindrical transducer. The analytical dependences obtained in the result
of a simulation allow us to establish the electrical impedance and amplitude values of the electric current
and electric charge on the electroded surface of a piezoelectric transducer (cylindrical piezoelectric shell of
finite height) under the inverse piezoelectric effect, thus obtaining a complete solution for the problem of
harmonic axisymmetric oscillations of a transducer of this type. In order to assess the results, the developed
mathematical model was used in cylindrical shell transducers made of PZT-type (plumbum zirconate
titanate) piezoelectric ceramics. Strong evidence of a frequency-dependent change of electric impedance
and components of the displacement vector for material particles in the oscillating piezoelectric transducer
was found with frequencies of electromechanical resonances within the range of 33-35 kHz and 82 kHz, when
a sharp impedance decrease was observed (2.6-5 times). A comparative analysis of mathematically calculated
and experimentally obtained values of the electrical impedance of the oscillating cylindrical piezoceramic shell
revealed high convergence between them (the discrepancy between the simulation results and experimentally
obtained data at the same values of operating frequency within the range up to 100 kHz did not exceed

17%).
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Introduction

The widespread use of piezoelectric transducers
in recent years [1] is explicated by their relati-
ve inexpensiveness, high reliability, progressing mi-
niaturization, versatility and integration into mi-
croelectronics and mechatronics technologies. Another
advantage of manufacturing and implementing pi-
ezoelectric devices is explained by the demand to acti-
vely introduce modern renewable, energy and resource
saving technologies within the concept of sustainable
development and the initiative "Industry 4.0” [2].

Piezoelectric transducers have won a special
importance in electro and hydro acoustics, where they
are designed to emit and receive acoustic vibrations in
air or water medium (components of target detection,
echolocation, ultrasonic non-destructive testing, health
diagnostics, etc.) [3,4].

According to the latest marketing research, the pi-
ezoelectric transducers market has grown significantly

over the past five years. Thus, the revenue of the pi-
ezoelectric transducers market amounted to 725 million
US dollars in 2016, increased to 1.1 billion US dollars
in 2021 and, according to Precision Market Reports,
a leading company in the field of business strategy, is
anticipated to reach 2.1 billion US dollars in 2026 with
an average annual growth rate of 17-19% in 2021-2026

[5].

At the same time, for new models of piezoelectric
transducers to be developed, it is necessary to re-
inforce the scientific base in the areas of improving
methodological, technological and, most importantly,
mathematical support. Improvements in the essenti-
al mathematical software will involve development
and practical implementation of new calculation
methods into production and operation of piezoelectric
transducers for electroacoustic devices, as well as
designing and modelling piezoelectric transducers with
various technical and design characteristics [6, 7).
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1 Relevance of the study based
on recent publications

Circular cylindrical transducers have been
amply used in practice, particularly, in designing
hydroacoustic antennas [8, 9], wherein either solid or
sectional shells of finite height often serve as the active
element. In this case, as discussed in [10,11], a standard
design scheme of a cylindrical transducer includes a
vertical set of a finite number of shells within a single
structure, which, by electrical switching according to
a certain scheme, allows designing transducers with
directed properties, both across the width of the main
petal and across the level of lateral petals. At the same
time, as noted in [9], choosing the correct relation
between the shell diameter and its height is immensely
important, since it enables us to determine the ratio of
resonance mode frequencies of different types and the
associated energy of elastic oscillations of the shells on
the mode selected as the working one for the whole
transducer.

On the other hand, a number of works [12-
15] are devoted to studying processes that occur
in shell piezoelectric elements of various shapes with
a fully electroded surface (solid electrodes). For
example, source [12] reveals the research results for
forced oscillations of a piezoceramic plate, which
are induced by acting external mechanical harmonic
load at the fundamental resonance frequency. Besi-
des, the presented results consider the viscoelastic
properties of the material and the plate’s fasten-
ing scheme. In publications [13, 14] the research on
the effects that occur in piezoceramic disks in mi-
crocircuitry piezoelectric motors are presented, and
an attempt is made to calculate and simulate the
vibration characteristics of variously sized thin pi-
ezoceramic disks. In [15], a mathematical model of a
crystalline piezoelectric element is presented, which
regards the gradient electric excited field induced wi-
thin the plane of this element. Major electromechanical
and energy characteristics of radial displacements of
piezoceramic elements, which occur while approaching
resonant / anti-resonant frequencies, are investigated
in [16, 17]. The oscillation process in piezoceramic
plates while supplying an exciting pulsed electric field
was studied in [18].

Previous research on the use of equivalent schemes
in the modelling of piezoelectric transducers [19,
20] has found it impossible to account mechanical
processes and phenomena occurring in piezoceramics,
and established the nature of the relationship between
these processes and the electrical characteristics of the
piezoelectric material. This ensures the adequacy of
such models in terms of their application to real pi-
ezoelectric objects and the physical processes inherent,
in them [21].

Nonetheless, while analyzing works on the
mathematical description of the processes occurring in

piezoceramic transducers, we have noted that no previ-
ous study has offered systematization of the methods
for calculation and modeling of these transducers,
which makes it impossible to create a generalized
approach to mathematical models of piezoelectric
transducers of various shapes and functional purposes,
which could be considered as a theoretical basis for
calculating technical and operational characteristics of
piezoelectric transducers.

However, it should be noted that since circular
cylindrical transducers conventionally imply radial
oscillations, there is an urgent need to develop a
theory of harmonic radial oscillations for cylindrical
piezoceramic shells of finite height.

Therefore, a topical issue of today is construct-
ing and experimental confirmation of determini-
stic mathematical models of cylindrical piezoelectric
transducers intended for acoustoelectric devices.

2 Problem statement for
modelling of a cylindrical
piezoelectric transducer

First, we would like to describe a cylindrical shell
of finite height h (Fig. 1), which is made of PZT-
type (plumbum zirconate titanate Pb[ZryTi;_«]O3)
piezoelectric ceramics polarized across its thickness.

z
h/2

Fig. 1. Calculation scheme of a piezoceramic
cylindrical shell

Shell side surfaces p = R and p = R+« bear a thin
metal plating. Electrodes are absent on the end surfaces
z = +h/2. A generator, which produces an electrical
potential difference Uye™?, is connected to the inner
electroded surface p = R of the shell. Since the shell
material is radially polarized, the matrices of the shell
material constants can be illustrated as follows:

a) matrix of adiabatic elastic moduli cg/\ (where
B,A = 1,2,...,6 are Voigt indices) in the mode of



26 Bazilo C. V., Bondarenko M. O., Usyk L. M., Andriienko O. 1., Antonyuk V. S.

constant electric field strength

cEocE oo 0 0
ek o0 0 0
)
B ¢ 00 0
HCB/\H_ Cﬂ 0 ol (1)
& 0
c55

b) matrix of adiabatic piezoelectric moduli eyg
(k=1,2,3,6=1,2,...,6)

e;1 ez e 0 0 0
lewsll = 0 0 0 0 0
0 0 0 O

c) adiabatic dielectric permittivity matrix X5j
(i,j =1, 2, 3), measured under constant strain mode

Xii 00
x5 = X52 0 (3)
ng

In matrices recordings (1)—(3), the same symbols
denote elements of equal size. The relations between
the reference values cgf‘f , ezeﬁf and Xf;"‘f, that refer
to the piezoelectric ceramics plate polarized across

its thickness, and matrices elements (1)-(3) are

r%prisented as fgll(;ws: ek = cfg;f; ;:552 = Ecﬁ;ef ; ek =

c3 ey = i = %(01{6 — e )il

Eref _ _ref. _ __ref. _ _

Cs5 "3 €11 = €337 ;€12 = €13 = €31"; €26 = €35

3(ess” —esths X = x5 xe =

3 Building a  mathematical
model of a cylindrical pi-

ezoelectric transducer

The generator, while producing the electrical
potential difference, creates an axisymmetric electric
field inside the shell, the tension vector of which alters
harmoniously in time and is almost completely defi-
ned by the radial component E,(t) = E,e™*, wherein
E, is the peak value. Influenced by the electric field,
axisymmetric deformations appear within the volume
of the shell. These deformations are formed by radial
u,(t) and axial u,(t) displacements of material parti-
cles.

Components u,(t) and u,(t) of the displacement
vectors change in time according to the harmonic law
ug(t) = uge™ (B = p,z), while their peak values u,
and u, are determined by coordinates p and z (of the
observation point (irrespectively of the circumferential
coordinate ¢) and satisfy the following equations of
steady harmonic oscillations [8]:

99pp
dp

00,
0z

" (0pp — Tpp)

(4)

+ powu, = 0,

00,,  00., 0ps 9
ez . =0, 5
ap By + P + powu (5)
where ox3 (A,8 = p,z) represent peak values of

resultant mechanical stresses harmonically varying in
time inside the piezoceramic shell volume deformed
by the electric field; pg marks density of the pi-
ezoceramics. Resultant stresses o g are postulated by
the generalized Hooke’s law for an elastic medium with
complicated (piezoelectric) properties [22]. Taking into
account the matrices structure for material constants
(1) and (2), the relations for calculating the quantities
ox,p will be noted as follows:

_E E E
Tpp = C11€pp + Cla€pp + 13622 — €11 E),

_ E E E
Opp = Cla€pp + C35Epp + C1aE2, — €12F,,

_E E E
02z = C13€pp + Cla€pyp + Co€z — €138,

Opz = Ozp = C5E5 <aau; + a{.;;) —e3sky,
where egg (8 = p, ¢, z) are peak values of harmoni-
cal time-varying deformations (relative elongations) of
infinitesimal segments oriented along the correspond-
ing coordinate lines. In case of axial symmetry,
the formulas to calculate deformations through the
components of the displacement vector of material
particles in the medium will be as follows:

_ Ou,

3 = — Ezx = .
pp p7 Oz

(10)

Let us assume that the cylindrical shell vibrates in
a vacuum. In this case, as follows from Newton’s third
law, the following conditions must be satisfied for the
shell’s surface:

aﬁp|p:R;R+a =0, UPZ|p:R;R+a =0, (11)

B e A T (12)

Since the stress-strain state of the thin shell does
not alter within the thickness of its wall, the condition
for stress 0,, to be equal to zero on the surface of the
shell’s wall should obviously be fulfilled inside the wall
as well, that is, within the volume of the shell. If we
note zero in the left-hand side of the relation (6), we
obtain the expression for calculating the component of
the deformation tensor €,,:

E E
& & €11
€pp = — E12 _ E13 T EE . (13)
Cr1€pp  C11%2z C11f%

The fact that elastic moduli c¢f% and cf are identi-
cal in magnitude enables us to assume, similarly to
previous calculations, that ¢ = cf; and to denote
the material constants with coinciding values with the
same symbols while performing further calculations.
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Taking into account relation (13), we can rewrite
expressions (7) and (8) as follows:

_ *
Opp = C22Epp + C12€,, — €191, (14)

€12 Ep, (15)

where c1o = cf5(1 — ¢l /cl));eo0 = by — ()2 /c))
are elastic moduli for biaxial stress-strain state; ej =
e12 — ernch,/cly denotes piezomodule for the mode of
constancy (equality to zero) of the radial stress. In this
case, the equations for steady-state harmonic oscillati-
ons (4) and (5), which possess the meaning of Newton’s
second law in the differential form, take the following
form:

Ozz = C12€pp + Cco2€, —

Oo, o
L= TR ety =0, (16)
00.,  0sp 9
. =0. 1
EP 7 T Powuz=0 (17)

The electrical state of a deformable cylindrical shell
is defined as the sum of electrical polarization 5*,
which is induced in the volume of the shell by an
external device, that is, by an electric potential di-
fference generator (Fig. 1), and electric polarization
BH, which is generated by the direct piezoelectric
effect in the process of dynamic deformation of the
piezoceramic shell. Hereinafter, polarization D* will
be designated as external electric polarization, while
component D" will be designated as internal polari-
zation. The electric induction vector D* is completely
specified by the component of the electric field strength
vector £, which is created by the generator; at the
same time, it is not influenced by variable z. Thus,
D* {D7,0,0}, where the radial component consti-
tutes
Dy = x4, E;. (18)

Internal electric polarization is determined by the
deformations of the piezoceramic shell and the internal
electric field, the electric potential ®'! of which does not
depend on the values of the circumferential coordinate
. Hence Dn {DgI , 0, DE}, where the radial and axial
components of the internal electric induction vector are
defined as follows:

DE = 6T2(6tptp + 5zz)a DE = 26355;7,2 + X§2E,£Ia (19)
where EIl = —%. Since 0,, = 2ce,, —e3s BN =0
at any given point inside the wall of the piezoceramic
shell. Next, taking into account that e,, = %(8;; +
Ge) = (%2

P z

), we obtain the following definition:

11
835EZ

=7 E
0z cis

Oup _

(20)

Having substituted relation (20) in the definition of
the axial component of the internal electric polarization
vector, we obtain

Dg = Xg2E,£Iv (21)

where x5, = X55 + €35 /ck; is dielectric constant in the
mode of constant (equal to zero) voltage o,;.

Since total electric polarization D = D* + DU
must satisfy the condition for mobile (free) electricity
carriers to be absent [9], namely, condition

divD =0, (22)
then, taking into account that vector D* satisfies

condition div D* = 0 by definition, we come to the
conclusion that vector D™ must satisfy the condition

div D" = 0. (23)
It follows from condition div D* = 0 that:
1/p 8/0p (pD}) = 0. (24)

Differential equation (24) enables us to identify
potential ®* of the electric field generated inside the
shell volume by the generator of the electric potential
difference, i.e., the external electric field. The expressi-
on for calculating potential ®* will be as follows:

" = —C1/x11 In(p/R) + Ca, (25)

where C7 and Cy are constants to be found in the
course of further problem solving. From condition (23)
under the assumption that the potential of the internal
electric field does not depend on the radial coordinate
p the stress-strain state remains unchanged over the
thickness of the shell wall, we derive the differential
equation for the potential ® of the internal electric

field:
= 6’{2 <'Ll,p+]_ auz)
X352 \R2 R 9z )
Since condition D! = 0 on the end surfaces
z = =£h/2 of the shell must be satisfied (the di-
electric constant of piezoceramics exceeds the dielectric
constant of vacuum by more than three orders of
magnitude), potential ®'!, determined by equation (26)
must satisfy the following boundary conditions:

9?1
0z2

(26)

ool

0z =0

z==xh/2

(27)

The total electric potential ® = ®* + ®' or the
potential of the resulting electric field must satisfy the
following conditions on the electroded surfaces of the
piezoceramic shell:

Cy + &1 — U, ‘p:R —0, (28)
Cy
——In(l+a/R)+C, =0, (29)
X11 p=R+a
. h/2
where @ = & [ ®U(2)dz is the potential of

h
—h/2
the polarization (internal) electric field averaged over
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the height, and, more generally, over the area of
the electroded lateral surface of the cylindrical shell.
Averaging occurs due to conduction currents in
electroded surfaces. The currents equalize the polari-
zation potential on the electroded surfaces of the shell.
It follows from condition (24) that D} = Ci/p ~
C1/R consequently, taking into account relation (18),
it can be justified that:
EY = Cy/Ryi). (30)
Since radial component E, of the strength vector of
the resulting electric field in the volume of the vibrating
shell is completely conditioned by the component E7,
equations (14) and (15), incorporating the deformati-
ons definition (10), can be formed as follows:

Opp =C20Up/R + c120u, /02 — e],C1/Rx5,,  (31)

02z =C12Up/ R + c200u, /02 — e],C1/Rx5,.  (32)
By inserting expressions (31) and (32) into the

equations of motion (16) and (17), we obtain:

Oou,

u e75Ch

—Cor i — 012l + pow?u,=0, (33)
R2 R 9z = R2x5, P
1 Ou, 0?u, 9
CmE B + CQQW + pow“u, =0. (34)

Based on equation (32), the radial component of the
displacement vector of material particles in the shell is
derived:

R ou, 15C
u :_%72%_’_ €1201 T
2 [1- (kR)?| 92 ey [1 = (WR)’]
(35)
where k*> = pow?/coy represents the square

wavenumber of the radial component of axisymmetric
vibrations of the cylindrical shell.

By differentiating expression (35) with respect to
the variable z and substituting the obtained result into
equation (34), we conclude that:

0*u,/02° + ~*u, =0, (36)
where symbol v? denotes the square wavenumber of
the axial component of axisymmetric vibrations of the
cylindrical shell of a finite height. Wherein:

(kR)? [1 - (kR)Q}
1— (kR)? = (c12/c22 )*

Obviously, the dimensionless quantity kR in relati-
on (37) can be interpreted as the dimensionless
frequency 2, which, by definition, is an independent
variable. In this case, the dimensionless quantity ¢ =
YR acquires the status of a dependent variable. The
physical meaning of value ( is defined by equation (36),

(YR)* = (37)

since it denotes the wavenumber of axial displacement
of the material particles changing harmonically in ti-
me. The dependence graph = f(¢), which has the
frequency spectrum meaning of the wavenumbers of the
axial harmonic vibrations of the piezoceramic shell, is
shown in Fig. 2. The graph is conditioned by the quali-
tative content of our above-mentioned assumptions on
the nature of the stress-strain state of a cylindrical shell
during radial vibrations, which constitute the main
content of the so-called membrane theory of elastic
shells, developed in the middle of the twentieth century
[23]. When constructing the curves shown in Fig. 2,
the following numerical data were processed: ¢y =
106 GPa; ¢, = 112 GPa; ¢k, = 62 GPa. The indicated
elastic moduli are inherent in piezoceramics of PZT-19

type.
Q

5

Fig. 2. Frequency spectrum of axial vibrations
wavenumbers of a shell made of PZT-19 piezoelectric
ceramics

The solution to equation (36), which will not
contradict the physical meaning of the problem being
solved, takes the following form:

(38)

u, = Bsinyz,

where B is the constant to be found.

Constant B is found from the boundary conditi-
ons (12), which, under the assumptions made about
the shear stress o,, are reduced to the condition
JZZ‘Z::I:h/Q = 0. By substituting expressions (35) and
(38) into relation (32) and equating the obtained result
to zero at z = +h/2, we define constant B as follows:

_ v Bk, 7)
B=WolkR) — 5 (39)
where Wy (kR) = 2 Bk,y) =

c22XT, [1—(kR)2] ;
17(]{512)27612/622

cos(vh/2)

After defining constant B the radial component
of the material particles’ displacement vector can be
found:

u, = Wo(kR)[1 — e(k,)cosyz], (40)
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C12[1—(kR)2—012/C22 ]
czg[lf(kR)Qf(Cw/CzQ )2] cos(vh/2)"

After substituting the found values of the dis-
placement vector components into equation (26), we
obtain:

02l ely

2 WWO (kR) [ov (K, ) cosyz + 1],
where a (k,v) = (v/k)*B(k,v) — e(k, 7).

By integrating the left and the right sides of equati-
on (41), we obtain:

oo™ ety
9z X5, 1

where € (k,7v) =

(41)

Wo (kR) a(l;,’y) sinyz + z|+C. (42)

Obviously, constant C' = 0, hence 901 /9z = B! =
0 while z = 0.

Let us represent the first polarization potential
derivative ®', as the sum of an infinite series of
trigonometric functions sin k,x, i.e.:

ol &
9 Z Ay sink,z,

0z —

(43)

where A, denotes expansion factors; k, denotes the
dimensional parameter.

Since condition (27) is obligatory, the requirement
should be observed:

1
+sin (2knh> =0,

whence it follows that the expansion parameter k, =
27n/h, where n = 1, 2, 3,... is an element in a series
of natural numbers. Obviously, the equality must be
satisfied:

II oo
0d Z Apsink,z, (44)

0z —

where A, is the weight coefficient, or the expansion
factor, to be determined.
Therefore, it is possible to prove that:

. [ 2mn . [ 2mm ds — 0Vn #m,
TR )M\ TR ) T L while n=m.
h

SR

2
Taking into account the integral above, we shall
determine the expansion coefficients (43) as follows:

An —_ (_1)" €T2hWO (kR) x

™m X5, R?
2(mn)? Csin(yh/2)
) [(W — (2m)’  (h/2) 11' ()

Further we shall integrate the left and right sides of
expansion (43) and note down the general expression
for calculating the electric potential ®:

h <= A, 2
ol = —— — cos (an) + Py,

2T n
n=1

(46)

where ®( is a constant.

Constant ®( shall be derived from the fact that
& is the electric field potential, which is formed by
perturbations of the stress-strain state of the cylind-
rical shell in the axial direction. With z = 0 such
perturbations are absent, hence, we may assume that:

o0
cI>H(0):—i ﬁ+<1>0:0.

2T n
n=1

From the equality above, it follows that
h = An
dy — — Zn
07 on ; n’
and expression (46) will be formulated as follows
2
[cos (Tz) — 1} .

The electric potential ", averaged over the height
of the shell, is established from relation (47) as follows:

- h <~ A
pfl=— % ==~
Qw;n’

which is followed by determining constant Co from
condition (28):

h XA
R 4
27rn:1n (47)

h = A
02 = Uo - — —_— =
2m = n
2
=Uy— K2 ! - X
272 R? {1 — (kR) } Xo
= (-1)" (27n)? sin (vh/2)
X —1], (48
n; n? | (yh)? = (27n)*> (vh/2) (48)
where K2 = (e}5)?/(X$ac22) is the square of the

electromechanical coupling coefficient of the shell
material for the axial component of axisymmetric vi-
brations.

By substituting expression (48) into boundary
conditions (29), we shall obtain the relation for
calculating the constant C;. Self-evident calculations
provide the following definition:

Uni |1 - (kR)?]
Cl = )
In(1+a/R) [1 = (kR)?] + K2D (w,T)

(49)

R (D"
D{w.T) = QWQRQZ nz

n=1
_ 1]

y (27n)®  sin(yh/2)
(vh)? = (27n)*>  (vh/2)
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is the additive property, which is related to the
connectivity of elastic and electric fields inside the
volume of an oscillating piezoceramic shell. The value
of the additive property depends on frequency w and
geometric parameters of the shell. It is obvious that
|D(w,T)| < 1 for any finite value of the dimensionless
quantity vh and h/R < 1. Since K? < 1, product
K?D(w,T) always constitutes much less than one for
shells of small height, when inequality h/R < 1, is satis-
fied. Taking this circumstance into account, formula
(49) for calculating constant C; will be recorded as
follows in the first approximation:

C1 = Uox1y/In(1 + o/ R). (50)

After determining constants C; and Cy we can say
that the stress-strain and electrical state of a cylindri-
cal shell of finite height is defined in full accordance
with the fundamental mechanic principles, i.e., with
the second and third Newton’s laws in differential
form, and satisfies the condition (22) of the absence
of free carriers of electricity within the volume of the
deformable piezoceramics. The latter implies that the
problem of harmonic axisymmetric vibrations of a pi-
ezoelectric shell of finite height has been completely
solved.

Next, we shall calculate electrical impedance Z,;(w)
of the vibrating shell. The incontrovertible fact is:

Zaw) = ~Up/1, (51)

where the negative value is explained by a decrease
in the potential with increasing numerical values of
the radial coordinate (Fig. 1); I denotes the electric
current amplitude in the conductors, which is supplied
to the electroded surfaces on the cylindrical shell. The
amplitude of the current I and the amplitude of the
electric charge @ on the electroded surface of the shell
are related to each other:

I =—iwQ. (52)

The amplitude of the electric charge @ shall be
established through the amplitude value of the radial
component D, = D% + DJ! of the electric induction
vector according to the following formula:

h/2
Q =2mR / (D; + D;‘) dz.
—h/2

(53)

Hence D% = C1/R and D} = e3y(u,/R + 0u./02),
then, substituting these quantities into integral (53),
we obtain the following relation for calculating electric
charge Q:

Q = CSUO\II(‘U& H)a (54)

where C§ = 2mhx¥;/In(1+«a/R) is the static electrical
capacitance of a cylindrical shell with fully electroded
lateral surfaces; ¥(w,II) is the function depending on
the frequency w and the set II of geometric, physical
and mechanical parameters, the numerical values of
which are calculated by the following formula:

K2

sin (vh/2)
[1_(k3)2]

¥ D= (1/2)

{a(kz,’y) +1|+1.
(35)

Symbol K? = (e},)?/(c22x5;) denotes the square
of piezoceramics electromechanical connection for the
radial component of axisymmetric vibrations of a
cylindrical shell.

After calculating electric charge @, we shall record
the final form of the expression for calculating the
electric impedance of a cylindrical piezoceramic shell
of finite height:

Ze(w) = 1/[iwC§ ¥ (w, II)]. (56)

It follows from definition (56) that at e}, =
0, i.e., when the dielectric between the cylindrical
electrodes does not possess piezoelectric properties,
function ¥(w, II) =1 and expression (56) both take the
trivial form Zg(w) = 1/(iwC§), that is, the electri-
cal impedance of the shell is equal to the capacitive
reactance of a capacitor with electrical capacitance
C§. When the shell material possesses piezoelectric
properties, the mechanism through which its electrical
impedance depends on the frequency is rather complex.

4 Discussion and experimental
confirmation of simulation
results

Figure 3 demonstrates frequency-dependent devia-
tions in the modulus of the electrical impedance of a
vacuum-vibrating shell made of PZT-19 piezoelectric
ceramics with merit of Q) = 80.

While plotting the curves shown in Fig. 3, the
following numerical data [24, 25] were used: ¢} =
106 GPa; cf, = 62 GPa; ¢k, = 112 GPa; e1; = 18 C/m?;
e12 = =7 C/m?; x§; = 1000 xo; X0 = 8,85-10712 F/m.
Shell dimensions: a = 1 mm; R = 14 mm and h =
20 mm. Electrical potential difference constitutes Uy =
1 V. The solid bold curve shows the results of calculat-
ing modulus Z,;(w) based on formula (56). Thin curves
show frequency-dependent dynamics in radial (solid
line; z = 0) and axial (dashed line; z = h/2) dis-
placements of material particles in a piezoceramic shell.
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Fig. 3. Frequency-dependent dynamics of electrical impedance (bold solid curve) and components of the material
particle displacement vector (solid and dashed thin curves) of an oscillating piezoceramic shell made of
PZT-19 piezoceramics

With resonance frequencies, the displacements
reach maximum values and, as a consequence, maxi-
mum values are taken by the deformations and the
radial component of the electric induction vector, which
is equivalent to a sharp increase in the levels of polari-
zation charges. The latter induces a sharp increase in
the current of free electricity carriers in the conductors,
that connect the generator of the electrical potential di-
fference and the electroded surfaces of the piezoceramic
shell. While the amplitude of the electrical potenti-
al difference is constant, an increase in the electric
current only occurs when the electrical impedance in
the electric current circuit decreases. Thus, within
the electromechanical resonance frequencies, a sharp
decrease in the electrical impedance of both the vi-
brating piezoelectric element and the cylinder shell is
observed. When passing the resonance frequency in
the direction of increasing frequencies, the deformati-
on indications alter along the height of the shell.
In this case, mutual compensation of electrical and
elastic components of the electrical induction within
the volume of the deformable piezoelectric is observed.
Consequently, the level of the resulting electrical polari-
zation subsides sharply and the electric current in
the conductors lessens. The latter corresponds to a
sharp increase in the electrical impedance of the osci-
llating piezoelectric sample. Since the piezoceramic
element consumes the maximum amount of energy
from the oscillation source within the resonance
frequency, which constitutes the main physical content
of the resonance phenomenon, at frequencies where
the impedance rises sharply, the consumption drops

to minimum. The described phenomenon provides
the grounds for the frequencies to be considered
electromechanical antiresonance frequencies.

Figure 4 illustrates the calculations (solid li-
ne) and experimentally obtained data (dashed line)
curves indicating frequency dependence of the electri-
cal impedance modulus of the oscillating piezoelectric
shell.
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Fig. 4. Calculations (solid line) and experimentally
obtained (dashed line) data for the electrical
impedance of the oscillating piezoelectric shell

The calculations are based on the parameters
that have been previously used for calculating curve
|Zei(w)], can be found in Fig. 3. Identical shell sizes
have been selected both for the calculations and the
experiment, namely o = 1073 m; R = 14-1072 m and
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h = 20-10~2 m. The electrical impedance values of the
piezoceramic shell in kiloohms are plotted along the
ordinate axis, and the current frequency normalized to
the frequency of the first resonance is plotted along the
abscissa axis.

The nature of dynamics in both curves in Fig. 4
coincides with an accuracy of 13-17% within a sufficient
range of frequencies. In other words, expression (56)
is a mathematical model of the electrical impedance
of the oscillating shell, the obtained mathematical
expression sufficiently corresponds to the real object
and the processes occurring in it.

Thus, the evidence from this study suggests that
the approach we have proposed here to mathematical
modelling the physical state of a cylindrical shell of
finite length provides reliable results that correspond
adequately to the experimental data. Therefore,
this method can be recommended for calculating
the transmission characteristics of electroacoustic
transducers in the modes of emitting and reception of
ultrasonic waves.

Conclusions

The problem of building a mathematical model of
cylindrical piezoelectric transducers is proposed in the
research, the solution of which proves interdependence
between the electrical impedance of the shell, the cyclic
frequency and the set of geometric, physical, mechani-
cal, and electrical transducer parameters.

The obtained analytical dependences, which can
be applied to determine the electrical impedance and
amplitude values of electric current and electric charge
on the electroded surface of a cylindrical piezoelectric
shell under the inverse piezoelectric effect, enable us
to completely solve the problem of harmonic axi-
symmetric oscillations in the piezoelectric shell of finite
height.

The current study has found evidence of a
frequency-dependent change of electric impedance and
components of the displacement vector for materi-
al particles in the oscillating piezoelectric transducer.
That allowed us to detect a sharp decrease in such
impedance (2.6-5 times), both for the oscillating pi-
ezoelectric element of PZT-19 piezoceramics in general,
and cylindrical shells in particular, with frequencies of
electromechanical resonances ranging within 33-35 kHz
and 82 kHz respectively.

Another important finding was that comparing
mathematically calculated and experimentally obtai-
ned values of the electrical impedance of the osci-
llating cylindrical piezoceramic shell indicated a high
convergence between the data. Hence, the discrepancy
between the simulation results and the experimentally
obtained data at the same values of the operating
frequency within the frequency range up to 100 kHz
did not exceed 17%.

The proposed paper presents the results related
to the experimental scientific and technical project
"Developing a highly efficient mobile ultrasonic system
to intensify the extraction process while manufactur-
ing concentrated functional beverages for combatants”,
that is being implemented by the authors (state
registration entry number: 0121U109660, entry date:
12.03.2021).
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MaremaTundHe MOIEJIIOBAHHS MUJIIHIPUI-
HUX M’€30€JIEKTPUIYHUAX II€EPETBOPIOBAYiB
AJs €JIEeKTPOAKYyCTUYHUX IIPUCTPOIB

Basino K. B., Bondapenxo M. O., Ycux JI. M.,
Andpienxo O. 1., Anmowox B. C.

B cTaTTi HaBOAATHCS TIOCIITOBHICTE Ta PE3YILTATH PO3-
pOOJIeHHST 1 TOC/TIPKEHHST MAaTEeMATUIHAX MOJIE/IeH TTHJIIH/I-
pUYHEX II'€30€JeKTPUYHUX I1€PETBOPIOBAYIB, AKi aKTHBHO
BUKOPHUCTOBYIOTHCSA B €JI€KTPO- Ta TiAPOAKYCTHIT (HAITPH-
KJIaJl, y TPUCTPOSX [Jjisd BUMIPOMIHIOBAHHS Ta MIPUIAOMY
AKYCTUYHUX KOJIMBAHb y TOBITPIHOMY YH BOIHOMY Cepe-
moswui). BiqMimamME 0cO6MMBOCTAMY PO3POBTIOBAHIX MO-
JeJieii € Te, 110 BCTAHOBJIEHI 33 1X JOTOMOTOIO 3aJIe2KHOCTI,
OPeACTaBIAIOTh COO0I0 MATEMATHIHUN OIKC eJIeKTPOAKY-
CTUYHOTO 3B’SI3KY MiK XBUJIROBMMU TIOJISIMH Ha PI3HMX Ii-
JISTHKAX IIOPOYKHUCTOTO II'€30KEPAMITHOrO IIepeTBOPIOBAta
MUHHAPUIHOT (POPMH.

OTpumani BHACIIOK MOJEJTIOBaHHS
QHAJITUYH]I 3aJIEKHOCTI [I03BOJIAIOTH BCTAHOBUTH €JI€K-
TPpUYHUN IMIOEeJaHC Ta AMIUITYOHI 3HAYEHHS CTPYMY
1 eJeKTPUYIHOTO 3apsiay HA eJEeKTPOJOBAHIN IOBEPX-
HI I€30€JIEKTPUTHOTO MEPETBOPIOBada  (IMJIHIPAUTHOL
’€30€IeKTPUIHOI  000JIOHKM KIHIEBOI BHCOTH) 33 yMOB
3BOPOTHOTO IT'€30€JeKTPUIHOr0 edeKTy, i TuM caMuM
OTPUMATH IIOBHHII PpO3B’S30K 3aJadi IIPO TrapMOHiitHI
BiceCcMMETPUYHI KOJIMBAHHS TAKOT'O IIEPETBOPIOBAYA.

IlpuBeneni pe3ynbTaTu OTpPMMAaHI 3 BHUKOPHCTAHHAM
PpO3po0/IeHOT MaTeMATHIHOT MO/IEI JI/IsT I/ HIPUIHIX 000-
JIOHKOBHUX II€PETBOPIOBAYIB i3 II'€30€JIEKTPUIHOI KepaMiKu
tury 1ITC. Bcranosiena 94acTOTHO-3aj€XKHA 3MiHA €JIEK-
TPUYHOTO IMIIEJIAHCY 1 KOMIIOHEHTIB BEKTOPA 3MilleHHS
MaTepiaJibHUX YACTUHOK II'€30II€PETBOPIOBAYA, 10 KOJIUBA~
€THCS: TaK, HA YACTOTAX EJIEKTPOMEXAHIUHUX DPE30HAHCIB
(mopanky 33-35 k['m ta 82 xI'm) cmocrepiraeTbcs piske
3MeHIeHHa Takoro imnemancy (y 2,6-5 pasis). IIposeneni
TOPIBHAHHS MaTEMAaTUYIHO PO3PAXOBAHUX Ta EKCIIEPUMEH-
TAJTbHO OTPUMAHMX 3HAYEHDH €JIEKTPUIHOTO IMIETAHCY IIH-
JIHAPUYHOL 11I'€30KepPaMivHOl OOOJIOHKHU, IO KOJIUBAETHCH,
MOKa3a/M BUCOKY 30iXKHICTH Mixk HuME (pO36iKHICTB Mixk
pe3ysibTaTaMu MOJE/TIOBAHHS Ta €KCIIePUMEHTAILHO OTPH-
MaHUAMHY JAHUMU 332 OJJHAKOBUX 3HAYEHb POOOYOl 4aCTOTH B
miamasoni mo 100 k' me mepesumyBana 17%).

TIPOBEIEHOTO

Karowosi IT’€30€JIeKTPUIHUI [1€PETBOPIOBAT;
AKyCTOEJIEKTPOHIKA; MAaTeMaTUIHa MOJE/Ib; IMIIEeJAHC; -
MIHAPUYHA 060JIOHKA
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B craTthe npuBomsTCS 1IOCTIEN0BATEIFHOCTD U PE3YIbTA-
THI pa3pabOTKMU M MCCIIEOBAHUS MATEMATHIECKIX MOIesIei
NUIAHIPUIECKNX IIbe303JIEK TPITECKHUX IIpeodpa3oBareeil,
AKTUBHO HCIIOJb3YEMBIX B JEKTPO- U TUAPOAKYCTHKE (Ha-
IpUMep, B YCTPOMCTBAX I MU3JIyUIeHWS U TIPHEMa aKy-
CTUYECKUX KOJI€0aHuii B BO3MYNTHOW WM BOMHON Cpese).
OmmuanresibHBIME OCOOEHHOCTAMU Pa3pabaThIBAEMbBIX MO-
Jeseil ABIAETCA TO, UTO YCTAHOBJIEHHBIE C WX IMOMOIIBIO
3aBUCHMOCTH IIPEICTABJISIOT COOOM MaTeMaTHIeCKOe OIH-
CaHUe 3JIEKTPOAKYCTUIECKON CBA3KU MEXKJy BOJIHOBBIMU I10-
JIIMH HA PA3HBIX YYACTKAX IOJIOT0 MHE30KEPAMHUIECKOTO
peobpa30BaTesIs MAINHIPUIECKON (POPMBL.

Ilosrygennsie B pe3ynbraTe MPOBEIEHHOIO MO/IEIUPO-
BaHUS AHAJIUTUYIECKUE 3aBUCUMOCTH IIO3BOJIIIOT YCTAHO-
BUTH 3JI€KTPUYECKHUI UMIICJAHC U aMIUIHTYIHble 3HAYeHUS
TOKA ¥ 3JIEKTPUYECKOrO 3apsd/ia Ha IJIEKTPOIUPOBAHHON
MOBEPXHOCTH TTHE303JIEKTPAYECKOTO TpeobpasoBarens (Iu-
JIMHIPUIECKON TTHE303/IEKTPUIECKON 000T0YKN KOHETHOM
BBICOTBI) B YCJIOBUAX OOPATHOIO IIBE303IEKTPUIECKOrO (-
dexTa, 1 TeM caMbIM 00€CIIEUNTH TIOJIHOE PEIIeHNe 33,1a K
O TapMOHHYECKUX OCECHMMETPHYIHBIX KOJIEOAHUSAX TAKOTO
npeobpa3oBaTeis.

IIpuBenensnbie pe3ysIbTaTHI MOy YEHBI C UCIIOIH30BAHU-
eM pa3paboTaHHONW MATEMATUYECKOW MOIEN sl ITAJIMH-
ApUYIeCKUX 000JI0UE€UHBIX TTPEoOpa30oBaTeIell U3 MHe303JIe-
krpudeckoii kepamuku tuna L{TC. Ycranosieno gactorao-
3aBUCUMOE M3MEHEHNE 3JIEKTPUUECKOTO MMIIEIAHCA U KOM-
TIOHEHTOB BEKTOPA CMEINIEeHUs MATEPUAIHHBIX YACTHUI[ KO-
Je6JII0MEerocss  Mbe30IIpeodpa3oBaTesisi: TaK, Ha YaCTOTaX
3IEKTPOMEXAHUIECKUX pe30HaHCoB (mopsamka 33-35 x['m m
82 xI'm) HaOIIOMAETCA DPE3KOE YMEHBIEHHE TAKOTO WM-
nemanca (B 2,6-5 pa3). Ilposenennbie cpaBHeHusi Mate-
MaTHYECKW PACCUMTAHHBIX W IKCIIEPUMEHTAIHHO TTOJIYIeH-
HBIX 3HAYEHUN 9JIeKTPUIECKOTO UMIIEJAHCA KOIeOIIonencs
MUIAHAPUIECKON [Tbe30KEePAMUIECKON 0D0JI0YUKH IT0KA3AJIN
BBICOKYIO CXOJUMOCTh M€Ky HUMH (PACXOKICHUE MEKITY
pe3yJIbTaTaMu MOJIE/IMPOBAHNS W SKCIIEPUMEHTAIHHO MOy~
YEeHHBIMU JAHHBIMHU IIPU ONMHAKOBBIX 3HAYEHHSX PabodIein
gacToThl B muanasone 10 100 k' me mpesbmano 17%).

Karouesvie ca06a: TMbe303IEKTPUIECKH MPpeobpa3oBa-
Tejb; aKyCTOYJIEKTPOHMKA; MATEMATHIECKAs MO/IEJIb; KM-
TIeTAHC; TMUJINHIPUYIECKas 000709Ka
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