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Mathematical Modeling the Electrical Impedance
of the Piezoceramic Disk Oscillating in a Wide
Frequency Range (Part 1. Low Frequencies)
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The article presents the results of mathematical modeling and analysis of the electrical impedance of a
piezoceramic disk that undergoes oscillations at low frequencies, i.e., when the length of the elastic wave
significantly (by an order of magnitude or more) exceeds the radial size of the disk. Thus, the proposed
mathematical model of disk-shaped ceramic elements of piezoelectric transducers, which are an important
component of modern communication devices, environmental sensors, precision equipment, medical devices,
etc. A key characteristic of the mathematical model described in the article is its ability to determine
analytical dependencies that allow estimating such fundamental electrical properties of the piezoceramic disk
element as electrical impedance and quasi-static electrical capacitance, thereby significantly simplifying the
calculation of such an element already at the design stage. The static dielectric permittivity of a piezoceramic
disk vibrating at low frequencies has been investigated. The calculated value of this parameter, based on
the physical constants’ characteristic of the piezoceramic of the PZT (lead zirconate titanate) type, is 1.844
times higher compared to the high-frequency (dynamic) dielectric permittivity. It has been found that in the
low-frequency range, when the mechanical stresses in the vibrating piezoceramic disk approach zero and the
direct piezoelectric effect is almost negligible, the electrical impedance of such a disk can be described as the
reactive resistance of a capacitor with electrical capacitance equivalent to the quasi-stationary capacitance
of the disk. This is confirmed by a high degree of convergence between theoretical data and experimental
results, with discrepancies not exceeding 6%. The results obtained in the article can be valuable for scientific
research in the fields of precision instrument engineering and radio equipment manufacturing. Additionally,
they have practical applications in the development and production of high-tech equipment.
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Introduction

In modern instrument engineering and radio equip-
ment manufacturing, special attention is given to the
development and improvement of devices made from
piezoelectric materials, among which disk-shaped pi-
ezoceramic elements hold a significant place [1]. They
are an integral part of communication devices, envi-
ronmental sensors, precision equipment, and medi-
cal devices [2]. Considering this fact, understanding
the peculiarities of the operation of disk-shaped pi-
ezoceramic elements plays a crucial role in enhancing
their effectiveness.

One of the key parameters determining the effici-
ency of using such piezo elements is their electrical
impedance [3], especially under oscillations across a
wide frequency range. Studying this issue holds si-

gnificant theoretical and practical importance as it
enables the optimization of the design and utilizati-
on of piezoceramic sensors in a broad spectrum of
applications.

This article addresses the issue of mathematical
modeling of the electrical impedance of a piezoceramic
disk oscillating across a wide frequency range, with a
particular focus on its performance at low frequenci-
es. Such mathematical modeling allows for replicating
the behavior of disk-shaped piezo elements under low-
frequency conditions and identifying optimal operating
modes. This is crucial for researchers and engineers
involved in the development of relevant equipment.
Furthermore, it contributes to a deeper understanding
of the physical processes underlying the operation of
disk-shaped elements made of piezoceramic materials.

http://radap.kpi.ua/radiotechnique/article/view/1973
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1 The relevance of the research

based on the results of the

publications’ analysis

Modern research in the field of mathematical
modeling of functional elements from piezoceramic
materials emphasizes the importance of a precise
understanding of their electrical (including impedance)
and mechanical properties. This encourages further
improvement and development of an effective
instrumentation base. An analysis of recent Ukrainian
and international publications indicates that this topic
is actively researched by the scientific community and
many specialists specializing in piezotechnology and
acoustic radio equipment [4].

Ukrainian scientists, including practicing
researchers from the research institutes of the National
Academy of Sciences of Ukraine and higher education
institutions in Ukraine (notably Derkach O., Ishchuk
V., Kirilyuk V., Kuzenko D., Petrishchev O., and
others [5–7]), make a significant contribution to the
development of mathematical models of piezoelectric
materials. Their works often focus on practical appli-
cations and the impact of various factors on the
properties of piezoceramics, making the modeling more
accurate and efficient for real operating conditions.

International research, particularly from Europe
and Asia, often focuses on improving materials and
manufacturing technologies for piezoceramics, directly
influencing their electrical characteristics, including
impedance. Among such studies, works by Cao P.,
Chen J., Gogoi N., Kirchner J., Wang Z., Zhang S.,
Zhou K., and others [8–10] are noteworthy. Popular
topics also include research on impedance changes at
different frequencies of vibrations (notably the works of
Han H., Cheng C., Xiong X-G., Nguyen T. T., Hoang
N. D., and others [11,12]), allowing for the optimizati-
on of piezoelement utilization in various devices, from
medical sensors to industrial sensors.

A significant number of works are dedicated to the
development of new methodologies and software for
modeling various processes occurring in disk elements
made of piezoceramic materials. Among these, the
contributions of scientists such as Fischer G., Bri-
ssaud M., Kenji U., and others [13, 14] are notable.
The results obtained in their studies help to better
understand and predict the behavior of piezoelements
under different conditions, playing a crucial role in
the development of advanced technologies and improv-
ing the accuracy of applying disk elements made of
piezoceramic materials.

However, after analyzing scientific papers from
open sources dedicated to mathematical modeling of
electrical properties of piezoelectric transducers, the
absence of a mathematical model for disk-shaped pi-
ezoelectric transducers that would allow for the precise

and relatively straightforward determination of their
electrical impedance has been identified.

Therefore, the topic of mathematical modeling of
the electrical impedance of a piezoceramic disk in the
low-frequency range is quite relevant and promising,
considering the constant development of technologies
and the increasing demand for high-precision devices
in various industrial sectors.

2 Formulation and solution of

the mathematical modeling

task for a piezoceramic disk-

shaped transducer

In Figure 1, we investigate a disk with thickness 𝛼
that is many times less than its radius 𝑅. The surfaces
of the disk 𝑧 = 0 and 𝑧 = 𝛼 (𝑧 is the coordinate axis
in the cylindrical coordinate system 𝜌, 𝜙, 𝑧, the origin
of which aligns with the center of the disk’s lower
surface) has electrode coating, namely, a thin layer of
silver (below 10 𝜇m) by technology as described in [15].
Electric potential 𝑈0e

𝑖𝜔𝑡 is applied to the top surface
𝑧 = 𝛼 (𝑈0 is amplitude value of the electric potential
selected from the condition 𝑈0/𝛼 << 0, 1𝐸0, where
𝐸0

∼= 2 MV/m is the electric field strength polari-
zing the disk material, which guarantees the absence
of nonlinear effects; 𝑖 =

√
−1 is an imaginary unit;

𝜔 is the angular frequency of electric potential sign
inversion; 𝑡 denotes time). The lower electrode surface
𝑧 = 0 is grounded, i.e., the potential on the surface is
zero.

α

Fig. 1. Computational scheme for an oscillating pi-
ezoceramic disk

The electrical potential applied to the disk induces
an electric field in the disk’s volume, which displaces
the ions of zirconium, titanium, lead, and oxygen
from the equilibrium position. As a result of the
harmonically time-varying disk deformation, polari-
zation charges arise and interact with electric charges
on the electrode disk surfaces, the electric charges
being delivered to these surfaces by an electric potenti-
al difference generator. The resultant electric charge
𝑄e𝑖𝜔𝑡, that is present on the surface 𝑧 = 𝛼, arouses
electric current 𝐼e𝑖𝜔𝑡 with its electric field in the
conductor connecting the surface 𝑧 = 𝛼 to the electri-
cal generator output. At any time given, the equation
holds 𝐼e𝑖𝜔𝑡 = −𝜕𝑄/𝜕𝑡 = −𝑖𝜔𝑄e𝑖𝜔𝑡, i.e., the ampli-
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tudes of the electric current and charge on the 𝑧 = 𝛼
surface are related by a linear relationship 𝐼 = −𝑖𝜔𝑄.

Obviously, the 𝑍𝑒𝑙(𝜔) electrical impedance of the
oscillating disk is subject to the Ohm’s law for the
circuit section [16], therefore

𝑍𝑒𝑙 (𝜔) =
𝑈0

𝐼
= − 𝑈0

𝑖𝜔𝑄
. (1)

The �⃗� (𝜌, 𝜙, 𝑧) amplitude value of the component
of the electric induction vector component which is
normal for this surface will determine the 𝜎0 surface
density amplitude value of the electric charge. In the
conditions under consideration 𝜎0 = 𝐷𝑧(𝜌, 𝑧) and, si-
nce all physical fields in the oscillating piezoceramic
disk a priori have axial symmetry, we therefore have
the equation

𝑄 =

∫︁
𝑆

𝜎0𝑑𝑆 =

2𝜋∫︁
0

𝑅∫︁
0

𝜌𝐷𝑧 (𝜌, 𝑧) 𝑑𝜌 𝑑𝜙 =

= 2𝜋

𝑅∫︁
0

𝜌𝐷𝑧 (𝜌 , 𝑧) 𝑑𝜌.

(2)

The electrical state of the disk will be determined
by the electric polarization law for the dielectric with
piezoelectric properties [17], and, in terms of the
amplitude values of the physical field characteristics
harmoniously varying in time, the law reads

𝐷𝑘 = 𝑒𝑘𝑛𝑚𝜀𝑛𝑚 + 𝜒𝜀
𝑘𝑗𝐸𝑗 , 𝑘, 𝑛, 𝑚, 𝑗 = 1, 2, 3, (3)

where 𝐷𝑘 is the amplitude value of the 𝑘-th electric
induction vector component (the unit for which is
coulomb divided by square meter); 𝑒𝑘𝑛𝑚 is tensor
component of piezoelectric modules (the unit is
coulomb divided by square meter); 𝜀𝑛𝑚 is amplitude
value of the infinitesimal strain tensor component (di-
mensionless quantity); 𝜒𝜀

𝑘𝑗 denotes components of the
dielectric constant tensor, which can be determined
experimentally in the mode of constant (equal to zero)
elastic deformations (upper symbol 𝜀); 𝐸𝑗 is the ampli-
tude value of the 𝑗-th component of the electric field
strength vector in the volume of the deformed pi-
ezoelectric. The notation of relation (3) assumes by
default that the convention on summation over twice
repeated indices is fulfilled. There exists a one-to-one
correspondence between the indices in the coordinate
axes of the right-handed Cartesian coordinate system
and the symbols on the axes in the cylindrical coordi-
nate system, namely: 1 ↔ 𝜌; 2 ↔ 𝜙 and 3 ↔ 𝑧.

The components of the infinitesimal strain tensor
satisfy the generalized Hooke’s law for an elastic medi-
um with piezoelectric properties [17] which has the
following notation:

𝜎𝑖𝑗 = 𝑐𝐸𝑖𝑗𝑘ℓ𝜀𝑘ℓ − 𝑒𝑘𝑖𝑗𝐸𝑘, (4)

where 𝜎𝑖𝑗 is the amplitude value of the mechanical
stress tensor component (the unit is newton divided

by square meter or pascal); 𝑐𝐸𝑖𝑗𝑘ℓ is the elastic modulus
tensor component, which is determined experimentally
in the mode of constant (equal to zero) electric field
strength (upper symbol 𝐸) within the volume of a
strained piezoelectric.

Elastic stresses 𝜎𝑖𝑗 and inertial forces that arise in
the volume of a dynamically deformed solid body are
related by Newton’s second law in its differential form
or, in other words, by the equations of motion, which, in
the case of an axisymmetric stress-strain state varying
in time according to the harmonic law, are noted in a
cylindrical coordinate system as follows [18]:

𝜕 𝜎𝜌𝜌

𝜕 𝜌
+

𝜕 𝜎𝜌𝑧

𝜕 𝑧
+

1

𝜌
(𝜎𝜌𝜌 − 𝜎𝜙𝜙) + 𝜌0𝜔

2𝑢𝜌 = 0, (5)

1

𝜌

𝜕

𝜕 𝜌
(𝜌𝜎𝑧𝜌) +

𝜕 𝜎𝑧𝑧

𝜕 𝑧
+ 𝜌0𝜔

2𝑢𝑧 = 0, (6)

where 𝜌0 is piezoceramic density; 𝑢𝜌 and 𝑢𝑧 are ampli-
tude values of the displacement vector components
of material particles, that is, infinitesimal volumes of
piezoceramics. Normal and shear stresses on the disk
surfaces must satisfy Newton’s third law. If the disk
oscillates in a vacuum or in the air – both situations are
similar and mean that the disk does not have mechani-
cal contacts with other material objects (Fig. 1) –
the following conditions will be satisfied on the disk
surfaces:

𝜎𝑧𝜌|𝑧=0 , 𝛼 = 𝜎𝑧𝑧|𝑧=0 , 𝛼 = 0∀ 𝜌 ∈ [0, 𝑅] , (7)

𝜎𝜌𝑧|𝜌=𝑅 = 𝜎𝜌𝜌|𝜌=𝑅 = 0∀ 𝑧 ∈ [0, 𝛼] . (8)

Since the components of the displacement vector
(𝜀𝜌𝜌 = 𝜕𝑢𝜌/𝜕𝜌, 𝜀𝜙𝜙 = 𝑢𝜌/𝜌, 𝜀𝑧𝑧 = 𝜕 𝑢𝑧/𝜕𝑧 and 𝜀𝜌𝑧 =
(𝜕𝑢𝜌/𝜕𝑧 + 𝜕𝑢𝑧/𝜕𝜌; )/2 in the problem under consi-
deration) determine the deformations, we argue that a
mathematical description of the electrical impedance
that is adequate to the real situation presupposes
an adequate mathematical description of the dynamic
stress-strain state of the oscillating piezoceramic disk.
Naturally, the qualitative and quantitative characteri-
stics of the stress-strain state within the disk volume
are significantly influenced by the electric field, which
is the algebraic sum of the electric field created
by the electric potential difference generator (herein-
after referred to as the electric field of an external
source), and the electric field that arises from the dis-
placement of ions from the equilibrium position (direct
piezoelectric effect). Further, this field will be referred
to as the internal electric field. The intensity vector
�⃗� (𝜌, 𝜙, 𝑧) 𝑒𝑖𝜔𝑡 of the total electric field or, as previously
mentioned, the electric field within the volume of a
deformable piezoelectric, satisfies Maxwell’s equations,
which in terms of the amplitude values of the harmoni-
cally time-varying physical fields may be written as:

𝑟𝑜𝑡 �⃗� = 𝐽 + 𝑖𝜔�⃗�, (9)

𝑟𝑜𝑡 �⃗� = − 𝑖𝜔�⃗�, (10)
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where �⃗� and �⃗� are amplitude values of the intensi-
ty and induction vectors of the alternating magnetic
field, while �⃗� = 𝜇0�⃗� (𝜇0 = 4𝜋 · 10−7 H/m is the
magnetic permeability of vacuum, i.e., the magnetic
constant); 𝐽 = 𝑟�⃗� is surface conduction current densi-
ty; 𝑟 is the specific electrical conductivity of the medi-
um. Piezoelectric ceramics are good electric current
insulators. Without excessive idealization, we assume
𝑟 = 0, equation (9) is therefore

𝑟𝑜𝑡 �⃗� = 𝑖𝜔�⃗�. (11)

Calculating the divergence from the left and right
sides of equation (11), we conclude that

𝑑𝑖𝑣 �⃗� = 0. (12)

Condition (12) determines the analytical properties
of the electric induction vector and is usually consi-
dered the condition of absent free electricity carriers in
the volume of the deformable piezo-dielectric.

The work [19] indicates that, within the frequency
range of the order of several megahertz, the alternat-
ing magnetic field in the volume of deformable pi-
ezoceramics is insignificant enough to consider that
𝑟𝑜𝑡 �⃗� ≈ 0. From the last equality it follows that the
electric field in the volume of deformable piezoceramics
is irrotational, i.e., potential, and can be described
with a scalar electric potential 𝜙 (𝜌, 𝜙, 𝑧) 𝑒𝑖𝜔𝑡. In this
case, the amplitude value of the electric field strength
vector will be determined through the scalar potential
amplitude value by the standard method:

�⃗� = −𝑔𝑟𝑎𝑑𝜙. (13)

By substituting definition (13) into relations (3),
and the obtained results into condition (12), we obtain
a second-order partial differential equation, which we
can rewrite in a cylindrical coordinate system as

1

𝜌

𝜕

𝜕 𝜌

[︂
𝜌

(︂
𝑒1𝑛𝑚𝜀𝑛𝑚 −

𝜒𝜀
1𝑗

ℎ𝑗

𝜕 𝜙

𝜕 𝑞𝑗

)︂]︂
+

+
1

𝜌

𝜕

𝜕 𝜙

(︂
𝑒2𝑛𝑚𝜀𝑛𝑚 −

𝜒𝜀
2𝑗

ℎ𝑗

𝜕 𝜙

𝜕 𝑞𝑗

)︂
+

+
𝜕

𝜕 𝑧

(︂
𝑒3𝑛𝑚𝜀𝑛𝑚 −

𝜒𝜀
3𝑗

ℎ𝑗

𝜕 𝜙

𝜕 𝑞𝑗

)︂
= 0,

(14)

where ℎ𝑗 are Lamé coefficients of a cylindrical coordi-
nate system (ℎ1 = 1; ℎ2 = 𝜌; ℎ3 = 1); 𝑞𝑗 (𝑞1 = 𝜌;
𝑞2 = 𝜙 и 𝑞3 = 𝑧) is the 𝑗-th coordinate in the cylindri-
cal coordinate system. The solution to this equation
for the object shown in Fig. 1, i.e., the 𝜙(𝜌, 𝑧) scalar
potential must satisfy obvious conditions:

𝜙 (𝜌, 𝑧)|𝑧=0 = 0, 𝜙 (𝜌, 𝑧)|𝑧=𝛼 = 𝑈0. (15)

The approximate condition must be satisfied on the
lateral surface of the disk 𝜌 = 𝑅 [19]

𝜕 𝜙 (𝜌, 𝑧)

𝜕𝜌

⃒⃒⃒⃒
𝜌=𝑅

∼= 0. (16)

Thus, providing the analytical description for
𝑍𝑒𝑙(𝜔) electrical impedance of an oscillating pi-
ezoceramic disk involves solving the boundary problem
of dynamic electroelasticity, which consists of three
differential equations (5), (6) and (14) and boundary
conditions (7), (8) and (15), (16). The link connecting
the elastic and electrical parts of this problem is provi-
ded by equations (3) and (4) of the physical state of
the piezoelectric.

The specific content of the physical state equations
(3) and (4) is determined by constructing matrices of
the piezoceramic material constants.

For a piezoceramic disk polarized along the z axis
(in Fig. 1, we indicated the polarization directionwith
an arrow marked by 𝑃 ) the matrices of material
constants are written as [20]:

– matrix of elastic moduli

⃒⃒
𝑐𝐸𝛽𝜆

⃒⃒
=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑐𝐸11 𝑐𝐸12 𝑐𝐸13 0 0 0

𝑐𝐸22 𝑐𝐸23 0 0 0
𝑐𝐸33 0 0 0

𝑐𝐸44 0 0
𝑐𝐸55 0

𝑐𝐸66

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ , (17)

where 𝛽 and 𝜆 are Voigt indices, each one combining a
pair of tensor indices according to the following scheme
𝛽 ↔ 𝑖, 𝑗 and 𝜆 ↔ 𝑘, 𝑙; one-to-one correspondence
1 ↔ (1, 1); 2 ↔ (2, 2); 3 ↔ (3, 3); 4 ↔ (2, 3; 3, 2); 5 ↔
(1, 3; 3, 1) и 6 ↔ (1, 2; 2, 1) remains between numeric
values of Voigt indices (𝛽, 𝜆 = 1, 2, . . . , 6) and tensor
indices (𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3). The relationships between
the numerical values of matrix elements are as follows
(17): 𝑐𝐸11 = 𝑐𝐸22 ̸= 𝑐𝐸33; 𝑐

𝐸
12 = 𝑐𝐸13 = 𝑐𝐸23; 𝑐

𝐸
44 = 𝑐𝐸55; 𝑐

𝐸
66 =(︀

𝑐𝐸11 − 𝑐𝐸12
)︀
/2;

– matrix of piezoelectric modules 𝑒𝑘𝑖𝑗 ↔ 𝑒𝑘𝛽 (𝛽 is
Voigt index)

|𝑒𝑘𝛽 | =

⃒⃒⃒⃒
⃒⃒ 0 0 0 0 𝑒15 0
0 0 0 𝑒24 0 0
𝑒31 𝑒32 𝑒33 0 0 0

⃒⃒⃒⃒
⃒⃒ , (18)

where 𝑒15 = 𝑒24; 𝑒31 = 𝑒32 ̸= 𝑒33; the study [19] found
that piezo modules are 𝑒15 = 𝑒24 = (𝑒33 − 𝑒31) /2 for
piezoceramics;

– matrix of dielectric constants 𝜒𝜀
𝑘𝑗

⃒⃒
𝜒𝜀
𝑘𝑗

⃒⃒
=

⃒⃒⃒⃒
⃒⃒𝜒

𝜀
11 0 0

𝜒𝜀
22 0

𝜒𝜀
33

⃒⃒⃒⃒
⃒⃒ , (19)

where 𝜒𝜀
11 = 𝜒𝜀

22 ̸= 𝜒𝜀
33.

Here we consider the qualitative composition of
the �⃗� (𝜌, 𝑧) electrical induction vector. In the general
(non-axisymmetric) case, the electric induction vector
is composed with three components 𝐷𝜌, 𝐷𝜙 and 𝐷𝑧.
In the problem under consideration, the physical state
of the disk has axial symmetry, which is ensured by
uniform electrode coating of the surfaces 𝑧 = 0 and
𝑧 = 𝛼, therefore 𝐷𝜙 ≡ 0. Radial component of the
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electrical induction vector is 𝐷𝜌 = 2𝑒15𝜀𝜌𝑧 + 𝜒𝜀
11𝐸𝜌.

The radial component of the electric field strength
vector is zero on 𝑧 = 0 and 𝑧 = 𝛼 surfaces, as well
as on the symmetry axis (Oz axis) of the disk and on
the lateral surface 𝜌 = 𝑅. On these surfaces, and on the
Oz axis, the tangential stresses 𝜎𝜌𝑧 = 2𝑐𝐸55𝜀𝜌𝑧 − 𝑒15𝐸𝜌

vanish, whence it follows that shear strains 𝜀𝜌𝑧 = 𝜀𝑧𝜌
vanish on surfaces 𝜌 = 𝑅, 𝑧 = 0, 𝑧 = 𝛼 and on the Oz
axis. Considering that shear strains 𝜀𝜌𝑧 and the radi-
al component 𝐸𝜌 of the electric field strength vector
vanish simultaneously, we conclude that the radial
component 𝐷𝜌 = 0 on the surfaces 𝜌 = 𝑅, 𝑧 = 0, 𝑧 = 𝛼
and on the Oz axis. It may be demonstrated that
in the volume of the disk there is 𝑧 > 0 plane on
which 𝜀𝜌𝑧 and 𝐸𝜌 vanish, and the 𝐷𝜌 component that
vanishes consequently. If the disk is thin enough, then,
taking into account the abundance of regions where
𝐷𝜌 = 0, we can, as a first approximation, assume that
𝐷𝜌 = 0∀ (𝜌, 𝑧) ∈ 𝑉 , where 𝑉 is the disk volume.

Hence, the electric induction vector in thin disks
is virtually completely determined by the axial
component 𝐷𝑧(𝜌, 𝑧), which, as follows from condi-
tion (12), must satisfy the relation 𝜕𝐷𝑧/𝜕𝑧 = 0,
which is equivalent to the statement that the axial
component does not depend on 𝑧 coordinate values,
i. е., 𝐷𝑧(𝜌, 𝑧) ≡ 𝐷𝑧(𝜌). It follows from definition (3)
that

𝐷𝑧 (𝜌) = 𝑒31𝜀𝜌𝜌 + 𝑒32𝜀𝜙𝜙 + 𝑒33𝜀𝑧𝑧 + 𝜒𝜀
33𝐸𝑧 ≡

≡ 𝑒31

(︂
𝜕𝑢𝜌

𝜕𝜌
+

𝑢𝜌

𝜌

)︂
+ 𝑒33

𝜕 𝑢𝑧

𝜕𝑧
− 𝜒𝜀

33

𝜕𝜙

𝜕𝑧
=

= 𝑒31
1

𝜌

𝜕

𝜕𝜌
[𝜌𝑢𝜌 (𝜌, 𝑧)] + 𝑒33

𝜕𝑢𝑧

𝜕𝑧
− 𝜒𝜀

33

𝜕𝜙

𝜕𝑧
.

(20)

In notation (20), we used the convention accepted in
mechanics about designating numerically equal materi-
al constants 𝑒31 and 𝑒32 with identical symbols.

Resorting to the fact that the axial component of
the electric induction vector does not depend on the
values of the 𝑧 coordinate, we integrate relation (20)
over the 𝑧 variable ranging from zero to 𝛼:

𝛼𝐷𝑧 (𝜌) = 𝑒31
1

𝜌

𝜕

𝜕𝜌

⎡⎣𝜌 𝛼∫︁
0

𝑢𝜌 (𝜌, 𝑧) 𝑑𝑧

⎤⎦+

+𝑒33 [𝑢𝑧(𝜌, 𝛼)−𝑢𝑧 (𝜌, 0)]−𝜒𝜀
33 [𝜙 (𝛼)−𝜙 (0)] .

(21)

Further, we introduce the notation

𝑢(𝑧)
𝜌 (𝜌) =

1

𝛼

𝛼∫︁
0

𝑢𝜌 (𝜌, 𝑧) 𝑑𝑧, (22)

and will denote value 𝑢
(𝑧)
𝜌 (𝜌) as the radial component of

the displacement vector of the disk’s material particles,
averaged over the disk’s thickness. Since 𝜙(𝛼)−𝜙(0)≡
𝑈0, the expression (21) is therefore

𝐷𝑧 (𝜌) = 𝑒31
1

𝜌

𝜕

𝜕𝜌

[︁
𝜌𝑢(𝑧)

𝜌 (𝜌)
]︁
+

+
𝑒33
𝛼

[𝑢𝑧 (𝜌, 𝛼)− 𝑢𝑧 (𝜌, 0)]− 𝜒𝜀
33

𝑈0

𝛼
.

(23)

Anticipating substitution of expression (23) into
relation (2), we introduce the notation

𝑢(𝜌)
𝑧 (𝑧)=

1

𝜋𝑅2

2𝜋∫︁
0

𝑅∫︁
0

𝜌𝑢𝑧 (𝜌, 𝑧) 𝑑𝜌𝑑𝜙=
2

𝑅2

𝑅∫︁
0

𝜌𝑢𝑧 (𝜌, 𝑧) 𝑑𝜌,

(24)

and will consider value 𝑢
(𝜌)
𝑧 (𝑧) to be the axial

component of the displacement vector of the disk
material particles, averaged over the disk’s thickness.

Substituting expression (23) into definition (2) of
the electric charge 𝑄 on the 𝑧 = 𝛼 surface and consi-
dering definition (24), we obtain the following notation

𝑄 = 2𝜋𝑒31𝑅𝑢(𝑧)
𝜌 (𝑅)+

+
𝜋𝑅2

𝛼
𝑒33

[︁
𝑢(𝜌)
𝑧 (𝛼)− 𝑢(𝜌)

𝑧 (0)
]︁
− 𝜋𝑅2

𝛼
𝜒𝜀
33𝑈0.

(25)

Here, we introduce the notation

𝐶𝜀
𝜕 =

𝜋𝑅2

𝛼
𝜒𝜀
33, (26)

and will consider value 𝐶𝜀
𝜕 the dynamic electric capaci-

tance of an oscillating piezoceramic disk. Definition
(26) included, we can rewrite expression (25) as

𝑄 = 𝐶𝜀
𝜕 Ξ

(𝜀) (𝜔) , (27)

where

Ξ(𝜀)(𝜔)=
2𝑒31𝛼

𝜒𝜀
33𝑅

𝑢(𝑧)
𝜌 (𝑅)+

𝑒33
𝜒𝜀
33

[︁
𝑢(𝜌)
𝑧 (𝛼)−𝑢(𝜌)

𝑧 (0)
]︁
−𝑈0.

(28)
Substituting relation (27) into definition (1), we

obtain the expression for calculating the electrical
impedance of the oscillating disk

𝑍𝑒𝑙(𝜔) =
𝑈0

−𝑖𝜔𝐶𝜀
𝜕 Ξ

(𝜀)(𝜔)
. (29)

Expression (29) is valid in the high-frequency range,
when both radial and axial displacements of the materi-
al particles exist simultaneously, i.e., when the length
of the elastic wave becomes commensurate with the
thickness of the disk.

Note that the disk’s electrical impedance is determi-
ned by the averaged values of the displacement vector
components of material particles. Thus, we can apply
averaging operations (22) and (24) to equations (5) and
(6), respectively, and thereby transform them into ordi-
nary differential equations, which are always solvable
with varying accuracy. It is important to notice that
the system of partial differential equations (5) and (6)
is fundamentally unsolvable in general form.

Within medium and low frequency range, the
numerical values of the dynamic electric capacitance
and the analytical design Ξ(𝜀)(𝜔) alter due to the
characteristic properties of the electric elastic state
inherent in the oscillating disk.
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3 Discussion of simulation results

Here, we will consider the electrical impedance of
an oscillating piezoceramic disk in low frequency range.

Low frequencies will be the frequency range
inwhich the length of the elastic wave (the scale unit of
spatial inhomogeneity of the disk’s stress-strain state)
significantly exceeds the radial size of the disk 𝑅 (by an
order of magnitude or more). For example, for a disk
with a diameter of 66 mm, the low frequency range
will correspond to the range below 3 kilohertz. Hereby,
mechanical stresses and elastic deformations do not
change significantly, and at 𝜔 → 0, remain constant
in the volume of the piezoceramic disk.

From the boundary conditions (7) and (8) it follows
that normal stresses 𝜎𝜌𝜌 and consequently 𝜎𝜙𝜙 and
𝜎𝑧𝑧 are equal to zero both on the surface and at any
point in the volume of the piezoceramic disk. The same
statement is true for shear stresses 𝜎𝜌𝑧, while condition
𝜎𝜌𝑧 = 0 ∀ (𝜌, 𝑧) ∈ 𝑉 when 𝐸𝜌 = 0 is equivalent to the
condition 𝜀𝜌𝑧 = 0 ∀ (𝜌, 𝑧) ∈ 𝑉 . Under such assumpti-
ons, the generalized Hooke’s law (4) implies a system
of algebraic equations

𝑐𝐸11𝜀𝜌𝜌 + 𝑐𝐸12𝜀𝜙𝜙 + 𝑐𝐸12𝜀𝑧𝑧 = 𝑒31𝐸𝑧,

𝑐𝐸12𝜀𝜌𝜌 + 𝑐𝐸11𝜀𝜙𝜙 + 𝑐𝐸12𝜀𝑧𝑧 = 𝑒31𝐸𝑧,

𝑐𝐸12𝜀𝜌𝜌 + 𝑐𝐸12𝜀𝜙𝜙 + 𝑐𝐸33𝜀𝑧𝑧 = 𝑒33𝐸𝑧.

(30)

While writing the equation system (30), wewill
designate material constants of equal magnitudewith
identical symbols. Since normal and tangential stresses
are equal to zero, equations (5) and (6) of steady-state
harmonic oscillations in infinitely small piezoceramic
volumes are satisfied with an error that is proporti-
onal to the unaccounted volumetric density of inertial
forces. The solution to the equation system (30)with
respect to the desired tension-compression strains
𝜀𝜌𝜌, 𝜀𝜙𝜙 and 𝜀𝑧𝑧 is noted as

𝜀𝜌𝜌 = 𝜀𝜙𝜙 =
𝑒31𝑐

𝐸
33 − 𝑒33𝑐

𝐸
12[︁

𝑐𝐸33
(︀
𝑐𝐸11 + 𝑐𝐸12

)︀
− 2

(︀
𝑐𝐸12

)︀2]︁𝐸𝑧,

𝜀𝑧𝑧 =
𝑒33

(︀
𝑐𝐸11 + 𝑐𝐸12

)︀
− 2𝑒31𝑐

𝐸
12[︁

𝑐𝐸33
(︀
𝑐𝐸11 + 𝑐𝐸12

)︀
− 2

(︀
𝑐𝐸12

)︀2]︁𝐸𝑧.

(31)

Substituting relations (31) into formula (20) brings
us to

𝐷𝑧 = 𝜒𝜎
33𝐸𝑧 = −𝜒𝜎

33

𝑈0

𝛼
, (32)

where 𝜒𝜎
33 is dielectric permittivity of piezoceramics in

the mode of permanent mechanical stresses (equal to
zero) in the volume and on the surface of the oscillating
disk. This dielectric permittivity is calculated with the
formula

𝜒𝜎
33 = 𝜒𝜀

33 (1 + ∆𝜒𝜎
33) , (33)

where

∆𝜒𝜎
33 =

2𝑒231𝑐
𝐸
33 − 4𝑒31𝑒33𝑐

𝐸
12 + 𝑒233

(︀
𝑐𝐸11 + 𝑐𝐸12

)︀
𝜒𝜀
33

[︁
𝑐𝐸33

(︀
𝑐𝐸11 + 𝑐𝐸12

)︀
− 2

(︀
𝑐𝐸12

)︀2]︁ . (34)

With values of material constants typical for PZT-
type (lead zirconate titanate) piezoceramics, (𝑐𝐸11 =
110GPa; 𝑐𝐸12 = 60GPa; 𝑐𝐸33 = 100GPa; 𝑒33 =
18C/m2; 𝑒31 = −8C/m2 and 𝜒𝜀

33 = 1400𝜒0; 𝜒0 =
8, 85 · 10−12 F/m is dielectric permittivity of vacuum,
i.e., dielectric constant), calculation using formula
(34) generates the following result: ∆𝜒𝜎

33 = 0, 844,
that is, dielectric constant in the low-frequency range
(static dielectric constant), exceeds the high-frequency
(dynamic) dielectric permittivity 𝜒𝜀

33 almost two times.
When 𝐷𝑧 is determined by formula (32), the functi-

on is Ξ(𝜎)(𝜔) = −𝑈0, and the dynamic, or, which
can be more precisely defined, quasi-static electri-
cal capacitance of the piezoceramic disk is 𝐶𝜎

𝜕 =
𝜋𝑅2𝜒𝜎

33/𝛼. Hereby, expression (29) takes form of a
well-known formula for calculating the reactance of
electrical capacitance 𝑍𝑒𝑙 (𝜔) = 1/(𝑖𝜔𝐶𝜎

𝜕 ) and is confi-
rmed by the high convergence between the theoretically
obtained data and experimentally determined results,
not exceeding 6%. For example, for a disk made of lead
zirconate titanate PZT piezoelectric ceramics with a
diameter of 66mm and a thickness of 3mm, the static
capacitance was 16.68 nF.

Therefore, in the low frequency range, when the
mechanical stresses in the piezoceramic disk are practi-
cally equal to zero, and the direct piezoelectric effect is
practically absent, the electrical impedance of an osci-
llating piezoceramic disk takes form of the reactance of
a capacitor with electrical capacitance 𝐶𝜎

𝜕 .

Conclusions

A mathematical model for ceramic disk-type pi-
ezoelectric transducers, which allows for the estimation
of the electrical impedance and quasi-static electri-
cal capacitance of these transducers in the operating
frequency range, where the length of the elastic wave si-
gnificantly (by an order of magnitude or more) exceeds
the radial size of the disk, depending on their physico-
mechanical characteristics has been developed.

Discovered analytical correlations enable the
determination of parameters for the disk-type pi-
ezoceramic element, such as electrical impedance, pi-
ezoelectric modulus, dielectric constant, as well as
electrical capacitance in the operating frequency range.
It has been proven that the vector of electric induction
in a thin piezoceramic disk is almost entirely determi-
ned by the axial component 𝐷𝑧(𝜌𝑧), which does not
depend on the thickness of the disk. As a result, the
problem of harmonic oscillations in the piezoelectric
disk has been solved, contributing significantly to the
simplification of calculations for such an element even
at the design stage.

The static dielectric permeability of the pi-
ezoceramic disk in the low-frequency range has
been determined, and, based on typical material
constants (elastic modulus, piezoelectric modulus, and
dielectric permeability coefficients) for the PZT-type
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piezoceramic, it is found that the value 𝜒𝜎
33 exceeds

the value of the high-frequency (dynamic) dielectric
permeability 𝜒𝜀

33 by a factor of 1.844.

It has been established that in the low-frequency
range, when mechanical stresses in the piezoceramic
disk approach zero and the direct piezoelectric effect is
almost negligible, the electrical impedance of the osci-
llating piezoceramic disk is characterized as a reactive
resistance of a capacitor with an electrical capacitance
equivalent to the quasi-stationary electrical capaci-
tance of the piezoceramic disk. This finding has been
confirmed by a high convergence between the obtained
theoretical data and experimentally determined results
(with differences not exceeding 6%).

The paper presents data obtained as a result of the
experimental scientific and technical project “Creation
of ultrasonic highly efficient systems for agro-industrial
complex, food industry and medicine” thanks to the
named scholarship of the Verkhovna Rada of Ukraine
for young scientists – doctors of science for the year
2023.
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В статтi наводяться результати математично-
го моделювання та аналiзу електричного iмпедансу
п’єзокерамiчного диска, що здiйснює коливання на
низьких частотах, тобто коли довжина пружної хвилi
суттєво (на порядок i бiльше) перевищує радiальний
розмiр диска. Так, запропонована математична модель
дискових керамiчних елементiв п’єзоелектричних пе-
ретворювачiв, якi є важливим компонентом сучасних
комунiкацiйних пристроїв, датчикiв навколишнього се-
редовища, прецизiйного обладнання, медичних апаратiв
та iншого. Ключовою характеристикою математичної
моделi, описаної у статтi, є здатнiсть визначати аналi-
тичнi залежностi, якi дозволяють оцiнити такi основнi
електричнi властивостi п’єзокерамiчного дискового
елементу, як електричний iмпеданс та квазiстатичну
електричну ємнiсть, чим значно спростити розрахунок
такого елементу ще на етапi його проєктування.

Дослiджено статичну дiелектричну проникнiсть
п’єзокерамiчного диска, що коливається на низьких ча-
стотах. Вираховане значення такого параметра за зна-
чень фiзичних констант, що характернi для п’єзокерамiк

сорту ЦТС (титанат цирконат свинцю) в 1,844 раза вище
порiвняно з показником високочастотної (динамiчної)
дiелектричної проникностi.

Виявлено, що у дiапазонi низьких частот, коли ме-
ханiчнi напруження в п’єзокерамiчному диску, що ко-
ливається, наближаються до нульового рiвня та прямий
п’єзоелектричний ефект майже не вiдбувається, елек-
тричний iмпеданс такого диска можна описати як ре-
активний опiр конденсатора з електричною ємнiстю,
еквiвалентною квазiстацiонарнiй ємностi цього диска.
Це пiдтверджується високим ступенем збiгу теорети-
чних даних та результатiв експериментiв, де розбiжностi
не перевищують 6%.

Отриманi в статтi результати можуть бути корисни-
ми для наукових дослiджень у галузях точного прила-
добудування та радiоапаратуробудування, а також для
практичного застосування у розробцi та виробництвi
високотехнологiчного обладнання.

Ключовi слова: п’єзоелектричний перетворювач;
акустоелектронiка; математичне моделювання; iмпе-
данс; дисковий елемент
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