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The duration of pulsed signals is one of the main parameters to be estimated in radio monitoring systems.
When signals propagate in channels with deep fading, even at high signal-to-noise ratios, the pulse shape
will be distorted. In sophisticated electronic environment, it is also may be random interference in signal
processing channel, which leads to the occurrence of false pulses with random durations. Therefore, the values
of the signal pulses durations will be concentrated near their true value, and the rest of the detected pulses
will have a significantly random duration. That’s why, the development and study of methods for selecting
pulse signals by their durations in sophisticated signal environment is actual scientific problem. The aim
of the work is improving pulsed signals processing methods in fading channels by selecting its’ durations.
The study found that the estimates of signal pulse durations are normally distributed. Pulse durations that
are not related to signals are subjected to an exponential distribution. The input data for the proposed
method is only a sample of measured pulse durations. The values of the parameters of both the exponential
and normal distributions are unknown. In this case, the problem of selecting pulses by their durations is
formalized to the estimation of the mean values of normal distributions. To do this, it is proposed to search
for the maxima of the smoothed estimate of the probability density function. The scientific novelty of the
obtained results is that a method for estimating the mean value of a normal distribution at the background
of exponentially distributed values was proposed. An example of this approach is the estimation of pulsed
signal durations in channels with deep fading and impulse interference. Based on the developed method,

algorithms for automatic pulse selection for radio monitoring systems can be implemented.

Keywords: pulsed signal; fading; signal selection; normal distribution; exponential distribution; sample

DOLI: 10.20535/RADAP.2024.96.14-20

Introduction

One of the main tasks of radio monitoring systems
is to estimate the time and frequency parameters of
radio signals. One of these parameters is the durati-
on of pulse signals for radar stations, as well as the
duration of packets, symbols, frequency elements for
communication, control, and telemetry systems. Esti-
mation of signals time parameters is usually performed
by thresholding a complex envelope. Due to the non-
stationarity of the radio signal propagation channel,
some of the pulses will be affected by fading, which will
distort their shape. Therefore, in channels with deep
fading, even at high signal-to-noise ratios, only some
of the detected pulses will have a close to true durati-
on. The rest of the detected pulses will have random
durations. In a sophisticated electronic environment,
it is also possible for random interference to occur in
the frequency channel, which will lead to false pulses
detection. These factors make it difficult to select si-
gnals by their duration. That’s why, the development
and study of methods for selecting pulsed signals by

their duration in a sophisticated signal environment is
current scientific task.

1 Related works

The problems of detecting and estimating the ti-
me parameters of pulse signals in various domains of
science have been considered in numerous papers. In
particular, an approach to detecting weak pulse signals
against chaotic noise is proposed in [1]. To detect and
determine the beginning and end of pulse signals, a
generalized method using machine learning is proposed
in [2]. A method for detecting non-repeating irregular
pulse signals is presented in [3]. In [4], it is proposed
to use wavelet transforms and deep learning to classify
pulse signals in a noisy channel. A brief overview of
methods for estimating pulse durations and repetition
periods is given in [5]. A method for estimating pulse
durations using auto-compression is proposed in [6, 7].
In [8], an algorithm for estimating the time parameters
of pulses without thresholding is considered.
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The reviewed works do not address the issue of
selecting pulses by their duration when operating
in channels with deep fading and in sophisticated
electronic environment.

2 Problem statement

The aim of the work is improving pulsed signals
processing methods in fading channels by selecting its’
durations.

3 Method for
selection

pulse duration

Let’s consider a typical case where a frequency
channel with deep fading contains only white Gaussi-
an noise { with a known standard deviation (SD) o¢
and signals with unknown durations may appear at
unknown times. In this case, the threshold value can be
calculated for a given probability of false alarm. The
threshold processing is performed on the samples of
the complex envelope signal smoothed with a moving
average window of length L. For noise, the probabi-
lity density function (PDF) of the smoothed samples
has a chi-square distribution with 2(L + 1) degrees of
freedom.

For a given threshold value, the times at which
it is crossed by the complex noise envelope will be
random variables. Moreover, the threshold crossings
will appear with some fixed average intensity A for a
particular threshold value. Such events will create a
stream of random variables 7 which are time intervals
between two consecutive threshold crossings, which are
exponentially distributed [9] according to the following
expression:

(1)

It is worth noting that the values of 7 follow an
exponential distribution regardless of the type of di-
stribution of complex envelope samples. Therefore, the
duration of random interference will also follow an
exponential distribution.

For an exponential distribution, the value of the
parameter A is related to the values of the mathemati-
cal expectation m . and the SD o, according to the
following expression [9]:

p(T) = Xe 7.

(2)

Thus, it is possible to implement the signals selecti-
on by their durations, assuming that the number of
pulse duration values is limited and each duration
occurs a significant number of times in the observation
interval.

Errors of pulse duration estimates are normally
distributed. Pulse durations that are not related to
signals will have an exponential distribution. In other

words, the exponentiality of the PDF of 7 values in the
channel indicates the randomness of the pulse origin
caused, among other things, by deep amplitude fading.

The initial data for proposed method is a sample of
measured pulse durations of size M. In this sample, an
unknown number of values N, follows an exponential
distribution with an unknown parameter A. The remai-
ning values follow K normal distributions. Then the
sample size can be written as follows:

K
M =N, + ZNM.
=1

3)

The number of values for the i-th normal distributi-
on N,;, their mean values m.,,; and the SD o,,; are
also unknown parameters. Then the PDF of the mi-
xture of exponential and normal values can be written
in the following form:

1 (1 .1 &K1 g

p(T) B K+1 mTEe et \/ﬂ ; UTnie o '

(4)

In practice, the sample size M is finite, so the shape

of the histogram based on it, which is an empirical

analog of the PDF, will depend on the values of N, IV,;

and K. The ratio N./M determines the normalizing

factor for the exponential distribution, and N,;/M —

for the i-th normal distribution. Then expression (4)
can be rewritten as follows:

(r=mrni)?

Tni

(5)
Figure 1 shows the graphs of the resulting PDF
constructed according to expression (4), as well as
the exponential and three normal distributions. The
parameters of the individual distributions are given in
the legend of the graph. The addition of individual
distributions leads to the appearance of local maxima
and minima.

1.0+ --- exponential (M = 1, Ne = 1000)
gaussian (M =1, orm = 0.15, Np1 =350)
0.8 - === gaussian (Mmm =2, 0m2 = 0.25, N2 =150)
-—= gaussian (M3 = 3.5, omz = 0.15, Npz =250)
= summarized PDF
0.6 1
= \
E_ \\
0.4+
0.24
0.04
0 1 2 3 4 5 6

Fig. 1. Resulting PDF, exponential and normal distri-
butions



16

Buhaiov M. V., Zakirov S. V.

Then the problem of pulse selection is formalized to
the estimation of the mean values of the normal distri-
butions m,,;. In Fig. 1, the values of m.,; correspond
to the maxima of the sum PDF| so their estimation will
allow us to obtain estimates of pulse durations. Also, to
find the maxima, it is advisable to use the property of
the decreasing exponential distribution with increasing
argument.

To solve this problem, it is necessary to obtain
an analytical expression for estimating the PDF for
a given M using a sample of 7 values.

Kernel probability density estimation is most often
used to construct the PDF [10]. This approach is non-
parametric and based on local smoothing of sample
data. The parameters for implementing this method
are the type of kernel (window) and the width of the
smoothing band h. Most often, the Gaussian kernel is
used to estimate the PDF [11] because it provides the
greatest smoothing. The choice of h is a compromise
because it determines the degree of smoothing. A value
of h that is too small will result in the display of
unimportant sample details. Choosing a large value
of h will result in the loss of some information due
to excessive smoothing. In [12], for non-normal distri-
butions, it is proposed to calculate the width of the
smoothing interval using the following expression:

IQR
h=0.9 min (6, —— | M2 6
min (0, 1.34> , (6)
where IQR — interquartile range, which is more robust
to outliers than the SD; 6 — estimate of sample SD.
Then we estimate the PDF of a sample of values of

7 by the following expression [11]:

1 M
P(t) = 5 > K(mi,t),
i=1

K(7:,1) 1 _ (t—;i)z
Ti, = —/—¢€ )
hv27
where ¢ is an argument used to build the kernel.

The maxima of the PDF estimate are found as
the value of P(t) for those ¢ for which the value of
the derivative of P(tf) = 0 and changes its sign from
positive to negative. The value of the derivative of the
exponential component of the sum distribution

is a decreasing function for all values of 7.
For the i-th normal distribution, the value of the
derivative will be as follows:

_ (T_m‘rni)z

™ T an
(m T) 202 . (9)
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and reaches on zero values at the point 7 = m. ;.
However, for relatively small M (several hundred),
for large values of 7, due to their small number, the

pnil(T) =

derivative of P(t) will have zero values for those values
of the argument that do not correspond to pulse durati-
ons. These values are associated with the noise of
the sample due to its limited size. To filter out these
random maxima, it is necessary to take into account the
sample size M and the rate of decay of the exponential
component. That is, among all the detected maxima of
P(t), it is necessary to select those that correspond to
pulse durations, and discard the rest as noise. To do
this, it is necessary to perform threshold processing of
the detected maxima. The threshold function should
have a form close to the exponent. We write it in the
following form:

V(1) = E(7) + ¢(7), (10)

where E(7) — exponent; ¢(7) — some descending functi-
on.

The value of the function (1) reflects the fluctuati-
ons of the function P(t) associated with a limited
sample size M. It is also necessary to take into account
the fact that with an increase in 7 and a fixed M,
the number of values that fall within the histogram
interval of width h will decrease. Therefore, for larger
7, the sampling noise will be more pronounced than for
smaller ones. This is due to the fact that for a sample of
exponentially distributed values of size N., the number
of small values will be greater than the number of large
values, since the probability of occurrence of its value
decreases with increasing 7. Therefore, the function
©(7) should decay more slowly than the exponent. The
SD of the sampling function P(t) for each 7 will be
proportional to the number of 7 values falling into the
corresponding histogram interval. Based on the above
considerations, the value of the threshold function is
written in the following form:

N
W) = T (1)
where og — SD of the number of exponential values fall-
ing in the first interval of the histogram; ¢ is a positive
number that determines the probability of exceed-
ing the threshold by a noise emission; d — parameter
respousible for the function’s ¢(7) decay rate.

When constructing a histogram, the number of ti-
mes 7 values fall into the i-th interval n; is a random x?
variable with n; degrees of freedom. The dependence
of o on the sample size of the exponential distribution
N, and its mean value m,. was obtained by statistical
modeling:

1 —N>M%40,9
oo~ <0,017 T ——

e_m%m + o'oqe_(ﬁ)d’

- 3 (12)

The estimate of oy was obtained from 10* sample
realizations, so the error is about 0.31%. Expressions
(11-12) should be used for normalized values of the
PDF estimates.

In Fig. 2 is shown the dependence of the sample
mean mg and the SD oy of the number of values of
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an exponential random variable with parameter A = 1
falling into the first interval of the histogram ny on
the sample size N.. As you can see, the value of the
mean practically does not change and is approximately
equal to 1, so its influence on the value of the function
©(7) can be neglected. The value of ng/N, is subject
to the x? distribution. If the number of hits in the first
interval of the normalized histogram is more than 30
PDF, ng/N, can be approximately considered normal
and the value of ¢ in expression (10) can be chosen
equal to 4-5.
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Fig. 2. Dependence mg and o of sample size N,

Thus, to obtain the function ~(7), it is necessary to
estimate the mean value of the exponential distribution
mr. and the number of values of 7 from the sample
of size M distributed exponentially N.. The values of
mr. and N, we will search basing on the assumption
that the first value of the normalized histogram ng/M,
as well as all local minima of the PDF estimation
function P(t) belong to the exponential distribution
with parameters m,. and N,. To do this, it is enough
to solve the system of two equations:

N, .
Bl =—% ¢ e
Mne” (1
e _ T2
EQ = mTee mre

where 71,79 — arguments for which the function P(t)
has local minima.
After solving this system, we get the following

values:
T2 —T1

T In(E1) —In(BEy)’
N, = Mm, Ejemre.

mTE

(14)

The minimum values of P(t) are also random
variables. To obtain reliable estimates of them, it is
necessary to calculate the values of m,. and N, for
several different values of 7 at which P(t) reaches its
minimum and to average the results. Then, to estimate
the values of m,. and N, the following sequence of
operations should be performed:

1. Find all the minima of the function P(t) and
append the value of the normalized histogram for the
first interval ng/M to created array.

2. Sort the resulting array in descending order. This
is necessary because, due to sampling noise, the mi-
nimum P(t) for a larger 7 may exceed the minimum
P(t) for a smaller 7, which does not correspond to
an exponential distribution and will lead to additional
errors in parameter estimates.

3. For the first equation in system (13), substitute
ng/M for E; and 0 for 1. For the second equation, use
the minima of the function P(¢) with the corresponding
arguments 7.

4. Average obtained values of m,. and N..

Then the values of the estimated pulse durations
will be determined according to the following expressi-
on:

men = arg {max (P (7)) > 7 (r)} (15)

In this expression, 7 is used as an argument to the
function P(t). These parameters are related to each
other by the following relationship:

T = Tmaxt/M , (16)

where 7,,4. is the maximum value of 7 for each sample.

If the values in the sample follow only one normal
distribution, then there may be no minima of the
smoothed PDF. In this case, there should be only one
maximum of the PDF estimate, and the pulse duration
can be calculated as the arithmetic mean of 7.

4 Simulations and numerical

results

The effectiveness of the developed method will be
determined by the probability of detecting the values
of pulse durations and the relative error by estimat-
ing the values of their durations. Obviously, these
characteristics will depend on the parameters included
in expression (5), namely: N, mre, Npi, Morpi and orp;.

When working in real conditions, there may be
situations when a sample of size M contains only
exponentially distributed values, one or more only
normally distributed values, and a mixture of values
according to expression (5). Figure 3a shows the results
of pulse duration detection and estimation for the case
when the sample of size M contains only three normally
distributed random variables with the parameters gi-
ven in Table 1. The threshold value is calculated
according to expression (11), and the parameter values
are estimated according to expression (14). The follow-
ing parameter values were chosen: d = 0,5 and g = 5.
As we can see, two minima and three maxima were
obtained for the estimation of the PDF. Moreover, all
the maxima exceeded the calculated threshold.

Figure 3b shows the corresponding results for the
case when the sample contains 1000 exponentially di-
stributed values with parameter 1 in addition to the
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normal values given in Table 1. This figure also shows
the threshold for the case when the parameters of the
exponential distribution N, and m, . are known.

Table 1 — Parameters of normal values

Pulse number | Ny, | msy | 0
1 300 1 0,15
2 600 2 0,1
3 200 3 0,05

L7594 -2

V(T |estim. param.
P(T)

max(P(T))
min(P(T))
signal peaks

1.50 1
™

1.25{ e
o

© 100
0.75
0.501

0.251

0.00

0.8 1 Y(T) | known param.

Y(T) |estim. param.
P(t)

® max(P(1)

® min(P(T))

® signalpeaks

0.7 1
0.611

0.5

P(T)

0.4
0.3
0.2

0.14

e

0.0~ ‘ ‘ | ‘ ‘ !

(b)
Fig. 3. Results of pulse detection for case of only normal

values (a) and mixture of normal and exponential
values (b)

In Fig. 4a is shown the probability of pulse detecti-
on as a function of the relative number of normally
distributed values at the background of exponential
values at m,,, = 1 for different values of the SD. Fig. 4b
shows similar detection curves at o,, = 1 for different
normal distribution means. The following conclusions
can be drawn from these dependencies:

as N,, /N, increases, the probability of pulse detecti-
on also increases;

as m,, increases and other parameters are fixed,
the detection characteristics improve;

as o, increases and other parameters are fixed, the
detection characteristics deteriorate;

for N, /No>0,2, 071 /076 <0,15 and mrp, /mre >1,
guaranteed pulse detection is provided.
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Fig. 4. Dependence of pulse detection probability via
relative number of normal values for different SD (a)
and means (b)

Figure 5 shows the dependence of the relative error
e, of the pulse duration estimation on the relative
number of normally distributed values for different
means and standard deviations of the normal distri-
bution. These graphs show that for any values of the
distribution parameters, the value of e, decreases with
increasing N,/N. according to an approximately
exponential dependence. With a decrease in o,,, the
value of e, also decreases. However, at large N,,/N, >
0, 5, this difference becomes insignificant. For N,, /N, =
0,5 and o,, = 0,1, the error in estimating the pulse
duration does not exceed 1.5%.
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Fig. 5. Dependence of pulse duration estimate error via relative number of normal values for different mean:
(@) mrn = 1; (b) mrn = 1,5; (¢) mrp = 25 (d) mpn =3

In case of absence of exponential values in the
sample, the error estimates of pulse durations will
be normal random variables, and their values will be
determined by the sample size and the variability of
the data itself.

Conclusions

The scientific novelty of the obtained results is
that a method for estimating the mean value of a
normal distribution at the background of exponenti-
ally distributed values is proposed. An example of this
approach is the estimation of pulse signal durations
in channels with deep fading and impulse interference.
The reliability of the proposed method is confi-
rmed by the results of simulation modeling. Based
on the developed method, algorithms for automatic
pulse selection for radio monitoring systems can be
implemented. Prospects for further research in this
area should be focused on generalizing of the obtained
results for other types of distributions of signal and
interfering variables.
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Meton cesekiil iMIyJIbCHUX CUTHAJIIB 3a
iX TpuBaJIOCTIMH B KaHaJIaX i3 3aBMHUpa-
HHIMU

Byeatios M. B., 3axipos C. B.

TpuBasicTp IMILyJIbCHUX CHIHAJIB € OJHHUM 13 OCHOB-
HUX IapaMeTpiB, IO HiIdraloTh OIIHIOBAHHIO y CHCTEMAX
pamiomoniTopuary. IIpu momwmpenHi CurHamiB y KaHAIAX
13 rIMOOKMMM 3aBMUPAHHAMU HABITH ILIPU BUCOKUX 3HA-
YeHHSX BITHOIIEHHS CUTHAJ-TyM (OpMa IMITY/IbCIB Oyme
CIIOTBOPEHOIO. ¥ CKJIQ/HIM PaioeIeKTPOHHIN 006CTaHOBII

TAKOX MOJK/IMBE IIOIAQJAHHS B KaHAJ OOPOOJIEHHS BUIIA/I-
KOBUX 3aBaJ], IO TPU3BEIE 10 TMOSIBU XUOHUX IMITYJIHCIB.
Tomy 3HauUeHHS TpUBAIOCTEN KOPUCHUX IMITYJIbCiB OyayTh
30cepe/KeHi 611 X iICTHHHOTO 3HAYEHHs], a PellTa BAABJIe-
HUX IMIIy/IbCIB MaTUMYTh CYTTE€BO BHUIAJKOBY TPHUBAJIICT.
Y 3B’da3Ky 3 mmM po3pO0JIeHHS Ta OC/IXKEHHS MeTO-
B CeJIeKIll IMIIyIbCHUX CUTHAJIIB 32 IX TPUBAIOCTAMHU Y
CKJIQJIHIN CUTHAJIBHIN 0OCTAHOBIN € AKTYAJIHHIM HAYKOBHM
3aBJAHHIM.

MeTto0 poboTH € yIOCKOHAIEHHS MeTO/IiB 00pOOJIeHHS
IMILyJIbCHEX CATHAJIB y KQHAJIAX i3 3aBMUPAHHAMU HIIAXOM
CeJIEKIIil 1X TPUBAJIOCTEA.

Y xoxl mOCHI/IKeHb BCTAHOBJIEHO, IO OIHKU 3HAYEHb
TPUBAIOCTENl CUTHAJIBPHAX IMITYJIbCIB PO3IMOMiIEHI 33 HOP-
MaJIbHUM 3aKOHOM. TpPHBAIOCTI IMITy/IBCIB, IO He TTOB’sT3aHi
i3 curHAJIAMU, HMiANOPAIKOBAaHI €KCIIOHEHITIAIbHOMY DO3IIO-
miny. Buxinpummu mammmu Ui pobOTH 3aIIPOIIOHOBAHOTO
MeTOMdy € Jinie BUOIpKA BUMIDSIHUX TPUBAJIOCTEH 3HAYEHD
iMmysibciB. 3HAaYeHHS ITapaMeTpiB sIK €KCIIOHEHIAIbHOrO,
TaK 1 HOPMAJIPHUX DPO3MOALIB € HeBimommMu. B Takomy
pasi 3a7ada cesekmii iIMIy/IbCiB 3a ix TpuBasocTsMu Gbop-
MaJIi3ye€ThCd 10 OIIHIOBAHHSA CepeIHIX 3Ha9eHb HOPMAJIbHIX
po3moziis. s mporo 3amporoHOBaHO IIPOBOIUTH IIOIIYK
MaKCHUMYMIB 3IJIaI2KeHO] OIIIHKHY PO3MOMiIY MIILHOCTI fiMO-
BipHOCTEI.

HaykoBa HOBH3HA OTpHMaHWX Pe3y/IbTATIB IMOIATAE B
TOMY, IO 3aIIPOIIOHOBAHO METOJ OLIHIOBAHHHA CEPEeIHbOIO
3HAMEHHST HOPMAJILHOTO PO3MOAiILY Ha (POHI €KCIIOHEeHITAIb-
HO po3mnonisleHux Besu<uH. [IpuKIagHIM 3aCTOCYBaHHIM
JAHOTO IIIXOAYy € OLIHIOBAHHH TPHUBAJIOCTEH IMIIy/IbCHIX
CUTHAJIB y KaHAJIAX i3 IIHOOKMMU 3aBMHUPAHHSIMHI Ta iM-
myabcHUME Teperrkogamu. Ha ocHOBI po3pobseHoro me-
TOJIy MOXKYTh OyTH peasii30BaHi aJTOPUTMU aBTOMATHIHOT
CeJIeKIil iMITy/IbCiB IS CUCTEeM pPaJiOMOHITOPHHTY.

Karowost caosa: iMIyIbCHHUI CUTHAJ, 3aBMUDPAHHS; Ce-
JIEKIIig CHUTHAJIB; HOPMAJBHUI DO3MOMLI; €KCIIOHEHITIAJIb-
HUM PO3IIOILT; BUOIPKa
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