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This study is devoted to identification of low amplitude components from ECG signals by different time-
frequency analysis methods when main power spectrum falls on high-amplitude components. It was also
analyzed the problem of choosing correct scale system for determination low-amplitude components on the
scalogram by artificial intelligence models. As a result of the study, several modifications of the continuous
wavelet transform were proposed. First modification was based on the use of a scaling function and a modified
wavelet. Second modification was based on the use of cosine similarity at each iteration of convolution followed
by the use of a scaling function. The main idea of the study was to modify the wavelet transform in such
a way as to select the components which has the target amplitude and reduce all other components that
complicate the neural networks analysis of the interested fragments of the signal. Also, possible procedures
for signal restoring were proposed for preserving the effect of using scaling modifications. The testing of
the proposed modified algorithms was carried out on the basis of artificially created signals as well as on
the basis of real ECG signals with late potentials superimposed on them. Visual analysis of scalograms
and signal reconstructions obtained using the modified wavelet transform showed that the modified wavelet
transform is capable of extracting low-amplitude components from the signal with much greater spectral
power than the transform without modifications. In addition, the ability of common neural network models
to distinguish between cardiac cycles with and without late potentials was tested. As a result, it was found
that models that were trained on scalograms obtained using a modified wavelet transform train faster and
are less susceptible to local minima stucking. The results of classification of signals with and without late
potentials based on trained neural network models showed that training using scalograms obtained on the
base of a modified wavelet transform allows achieving 99% classification accuracy, which is 1-49% more than
that using scalograms obtained on the base of on the classical wavelet transform.
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Introduction

Modern heart electrical activity analyzing methods
make it possible to identify ECG pathologies of various
types by detecting abnormalities in different locations
and representations. Electrocardiogram (ECG), like
other biological signals, can contain diagnostically si-
gnificant information in time, frequency, phase and
other domains. Moreover, sometimes the combined
representations like time-frequency are better suited
for diagnosing some types of arrhythmias, for example
atrial fibrillation [1].

Analysis in different representations of ECG has
advantages and disadvantages. For example, algo-
rithms based on time-amplitude analysis are easy to
interpret by doctors and often do not require a lot of

computing resources. But, noise components of various
frequencies, superimposed on the analyzed signal can
significantly distort its shape and lead to an incorrect
evaluation.

Frequency analysis allows to decompose a signal by
its frequency components that increase the resistance
to noise, but sometimes it is very difficult to distin-
guish QRS complex components of close frequencies
especially with different amplitudes [2].

The combined time-frequency domain takes into
account both frequency and time information si-
multaneously. The representation of this type of
analysis is carried out in the space of three coordinates:
time, frequency and some amplitude characteristic,
which displays the ECG signal energy at a certain
frequency and point in time. The most common visuali-
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zation tool for this type of representation is scalogram.
Despite the ability to analyze a signal in the frequency
and time domains simultaneously, this type of analysis
also has its drawbacks.

One of the drawbacks besides the high
computational complexity is that the time-frequency
representation of the signal carries a large amount of
information (coefficients), which can lead to complicate
assessment. It is also very difficult to obtain high time
and frequency resolution at the same time. Also, it is
needs to sacrifice frequency resolution to increase time
resolution and vice versa.

For example, in short-time Fourier transform
(STFT), the time-frequency composition of the entire
signal represents a sequence of short-term frequency
spectra by small fragments. It is not difficult to
conclude that spectral components on ECG whose
duration is less than the window width could be lost in
this transformation. On the other hand, with a further
decreasing the window width, the frequency resolution
simultaneously decreases. Theoretically, this behavior
is described by the Heisenberg uncertainty principle,
which states that it is impossible to simultaneously
achieve high resolution in time and frequency [3]. But
in practice, STFT also has a number of other losses. For
example, at the edges of window functions with STFT,
a leakage effect is observed, which is caused by the
blurring of the signal energy across adjacent frequenci-
es when the signal is time limited [4]. To solve this
problem, special window functions are used. Another
popular approach is to use multiple window functions
for analysis in a method called multi-taper STFT.

There are also conversions aimed at minimi-
zing leakage effects and maximizing time and
frequency resolution. For example, the Wigner-Ville
transformation. This transformation is excellent for
analyzing signals that have a small number of
frequency components in their composition, but as
the frequency composition of the signal increases, for
example on ECG signal, the influence of cross terms
of the transformation increases also, which leads to
distortions in the time and frequency domains. To mi-
nimize the problem of cross terms, modifications of the
Wigner-Ville transformation can be used [5].

To analyze non-stationary ECG signals that have
a lot of low amplitude components and the zone of
interest localized over a short period of time, conti-
nuous wavelet transform (CWT) is used preferably
[6]. This type of transformation gives the ability to
represent ECG signal in a time-frequency domain, but
at the same time has much less losses compared to
STFT. Also, the wavelet transform is less receptive to
edge effects than STFT.

But wavelet analysis has some disadvantages. First-
ly, the result of the transformation depends signifi-
cantly on the choice of wavelet and scaling coefficients,
which can complicate the interpretation. Secondly,
from the principle of the wavelet transform, at small

values of scales, the low frequency resolution persists
[6]. With a large number of coefficients, the computati-
onal complexity of automated detectors increases. Due
to the large number of coefficients, the probability
of machine learning overfitting and the problems of
gradient fading increases also.

Therefore, it is necessary to develop an artificial
intelligent method or refine existing neural networks
approaches to obtaining time-frequency representati-
ons of ECG signal that can improve the quality of
processing and pathologies determination in ECG and
others biomedical signals using modern algorithms.

1 Formulation of the problem

To assess the quality of proposed transformations
a pathological ECG signal was generated and time-
frequency conversions was carried out using various
methods (Fig. 1):

Fig. 1. Time-frequency representation of the QRS
complex with late atrial and ventricular potentials;
cardiac cycle of pathological ECG signal with late
potentials highlighted in red (a); STFT scalogram
(b); Wigner-Vile scalogram (c); CWT scalogram (d);
approximate localization of late atrial potentials on
STFT and CWT (1, 2, 3, 4); manifestation of R peak

on Wigner-Ville scalogram (5)

Signals of late ventricular and atrial potentials were
superimposed on the artificial QRS complex of the
ECG signal, so that their location, amplitude and
duration corresponded to the biological aspects of this
types of the low amplitude components manifestation.

The presence of late potentials on the ECG can be
a sign of cardiomyopathy, atrial fibrillation and other
life-threatening pathologies. Late potentials occur as
a result of conduction disturbances in the myocardi-
um as a result of structural changes, disruption of
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ion channels, or myocardial metabolism. Therefore, ti-
mely identification of late potentials allows to begin
timely treatment and, as a result, improve the patient’s
quality of life [7].

An artificial signal of late potentials was generated
as a superposition of several sinusoids in the frequency
range of 80-120 Hz, phase-shifted among themselves
and having a spread in amplitude. The sampling
frequency of the resulting signal (Fig. 1a) was 1000Hz,
and the duration was 0.7 seconds.

The STFT scalogram was constructed using a Hann
window [8] of 100 samples. A high window overlap value
(90%) was chosen due to the fact that the fragments
of interest have a short duration.

The CWT scalogram was constructed based on the
Morlet wavelet with a central frequency parameter
𝜔0=6 [rad/sample], the number of scale coefficients
for analysis was chosen 198 from 3 to 200 inclusive.
The Wigner-Ville algorithm was built on the basis of
a common approaches for generating a time-frequency
representation of a signal [9].

In addition, for more discriminative ability,
the coefficients of time-frequency representations on
scalograms were provided on a logarithmic scale, since
without the use of logarithms, the manifestation of late
ventricular and atrial potentials on scalograms were
almost indistinguishable.

Analyzing the obtained representations (Fig. 1), it
can be observed that on the STFT scalogram (Fig. 1b)
manifestations of late ventricular and atrial potentials
are observed in the required frequency range approxi-
mately (80-120 Hz) (Fig. 1 1, 2). As a result of selecting
a large overlap, fuzzy boundaries of late potentials
in the time domain were obtained. In addition, these
boundaries are difficult to distinguish even on a logari-
thmic scale.

When analyzing the Wigner-Vile distribution
(Fig. 1c), even on a logarithmic scale, only the main
component of the QRS complex, (R peak), is clearly
observed (Fig. 1 5).

On the scalogram constructed using CWT
(Fig. 1d), the manifestation of late atrial and ventri-
cular potentials (Fig. 1 3, 4) has more accurate
localization in time. In the frequency domain, late
potentials are also more clearly expressed than with
STFT.

Thus, it can be noted that the resulting mani-
festations of late potentials on scalograms are difficult
to distinguish even on a logarithmic scale. Therefore,
identifying late potentials and other low amplitude
features using time-frequency representation is a di-
fficult task even for neural networks.

To solve these types of problems, it is necessary
to have some kind of algorithm that, like an optical
microscope, can clearly focus on components of the
required amplitude and analyze only them. Using this
approach, it would be possible to significantly clear
the time-frequency representation from the distortions

and make this representation much easier for artifici-
al intelligence analysis. To implement this approach,
amplitude analysis methods such as Empirical Mode
Decomposition [10], Hilbert-Huang Transform [11], and
Singular Spectrum Analysis [12] may be suitable. But
these methods are based on decomposing signal by
modes, where it is not possible to set the preferred
amplitude range in which the zone of interest lies.
Furthermore, short-term late potentials will be difficult
to select as a signal pattern, especially in the presence
of noise.

2 Materials and methods

To construct the required algorithm, the continuous
wavelet transform was taken as a basis. The process of
this transformation can be described by the following
formula:

𝐶𝑊𝑇 (𝑠, 𝜏) =
1√︀
|𝑠|

∫︁ ∞

−∞
𝑥 (𝑡) * 𝜓*

(︂
𝑡− 𝜏

𝑠

)︂
𝑑𝑡, (1)

where 𝑠, 𝜏 – the required wavelet transform coeffici-
ents, 𝑥 (𝑡) – analyzed signal, 𝜓* – complex conjugate
function to 𝜓 (where 𝜓 – mother wavelet), 𝑠 – scale
factor, 𝜏 – time shift parameter, 𝑡 – time variable.

In this formula 1√
|𝑠|

is a normalizing factor, which

ensures that the norm of the scaled and time-shifted
wavelet is kept equal to 1, that is ||𝜓𝑠,𝜏 (𝑡)|| = ||𝜓(𝑡)|| =
1 and parameter 𝑠 should be bigger than 0.

In this study, the modification of the wavelet
transform is performed using the Morlet wavelet. The
Morlet wavelet was chosen due to its good locali-
zation in the time and frequency domains, flexibility
and accuracy in tuning the wavelet frequency, and si-
milarity to late ventricular and atrial potentials. So,
the Morlet wavelet can be described by the following
formula:

𝜓 (𝑡) = 𝜋− 1
4 𝑒𝑖𝜔0𝑡𝑒−

𝑡2

2 , (2)

where 𝜓 (𝑡) – Morlet wavelet function of time (𝑡), 𝜔0

– central frequency of wavelet (corresponds to the
highest energy concentration in the Morlet wavelet),
𝑒𝑖𝜔0𝑡 – complex exponential which generates sine wave,

𝑒−
𝑡2

2 – function of the Gaussian window that modulates
the sine wave, ensuring that the wavelet has a finite
length. Member 𝜋− 1

4 represents a normalization factor
that included to equation to make the Morlet wavelet
wavelet energy equals to 1.

To reconstruct the original signal 𝑥 (𝑡) from the
obtained CWT coefficients 𝑋(𝑠, 𝜏), the following
formula can be used:

𝑥 (𝑡) = 𝐶−1
𝜓

∫︁ ∞

0

∫︁ ∞

−∞
𝑋(𝑠, 𝜏)

1√︀
|𝑠|

̃︀𝜓(︂
𝑡− 𝜏

𝑠

)︂
𝑑𝜏

𝑑𝑠

𝑠2
,

(3)
where 𝑥 (𝑡) – the initial signal, 𝐶−1

𝜓 – normalization
coefficient depends on wavelet 𝜓, 𝑋 (𝑠, 𝜏) – coefficients,
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obtained after CWT of signal 𝑥(𝑡), 1√
|𝑠|

– normalizati-

on factor, ̃︀𝜓(𝑡) is a dual function of 𝜓(𝑡) which is used
for inverse continuous wavelet transform. Integration
in this case is carried out according to two parameters,
first according to the shift parameter (𝜏) then accord-
ing to the scaling parameter (𝑠).

The Morlet wavelet itself is usually used as the dual
function [13]. Thus, in the case of Morlet wavelet, the
inverse wavelet transform can be performed using the
same function as the forward wavelet transform.

For the inverse continuous wavelet transform, the
normalization coefficient could be calculated by the
following formula:

𝐶𝜓 =

∫︀∞
−∞ | ̂︀𝜓 (𝜔)|2

|𝜔|
𝑑𝜔, (4)

where | ̂︀𝜓 (𝜔) | – Fourier transform of wavelet functi-
on 𝜓 (𝑡), 𝜔 – angular frequency, related to 𝑓 by the
equation 𝜔 = 2𝜋𝑓 . For inverse continuous wavelet
transformation in discrete form, simplification is very
often used to calculate the normalization coefficient
[14]. Then the formula will take the form:

𝐶𝜓 =
∑︁

(|𝜓 (𝑡)|2). (5)

This simplification directly sums the squares of
the modulus of the wavelet function in the time
domain, instead of integrating its Fourier transform.
This formula describes the normalization coefficient
in a practical approximation sufficient to restore the
initial signal.

Since the feature of the Morlet wavelet is that it
has its own central frequency, conversion from scales
to frequencies for discrete signals can be done using
the following formula:

𝑓𝑎 =
𝜔0

2𝜋𝑎
, (6)

where 𝑎 – scale of the wavelet, 𝜔0 – central frequency
of Morlet wavelet in [rad/sec].

But the recalculation formula also could depend on
the direct implementation of the wavelet transform. If
the Morlet wavelet depends not on time (𝜓 (𝑡)) but on
discrete sample (𝜓 [𝑛]), then 𝜔0 can be expressed in
[rad/sample]. Then the formula for converting scales
to frequency will be:

𝑓𝑎 =
𝜔0

2𝜋𝑎∆𝑡
, (7)

where 𝑎 – scale of the wavelet, 𝜔0 – central frequency
of Morlet wavelet in [rad/sample], ∆𝑡 – time interval
between signal counts. The choice of scale system also
affects the quality of the wavelet transform.

Fig. 2 shows the distribution of Morlet wavelet
spectrum depending on the selected scale system. The
x-axis has the logarithmic scale for more detailed dis-
play. The first graph (Fig. 2a), obtained using a linear

scale system (𝑠 = 𝑛, 𝑛 ∈ [0 : 𝑁 ]), shows that the
spectra overlap significantly at low frequencies and
have large gaps in high frequencies. To arrange the
spectra of wavelet functions more homogeneous, it can
be used a logarithmic scale system (Fig. 2b):

𝑠𝑘 = 𝑠𝑚𝑖𝑛 * 𝑟𝑘, 𝑘 ∈ [0, 𝑁−1] , (8)

where 𝑠𝑘 – logarithmic scale, 𝑠𝑚𝑖𝑛 – minimal scale, 𝑟 –
scaling coefficient.

If the largest (𝑠𝑚𝑎𝑥) and smallest (𝑠𝑚𝑖𝑛) scale was
known within which we want to scale the wavelet so for
the required number (𝑁) of scales the scaling coefficient
could be calculated as:

𝑟 =

(︂
𝑠𝑚𝑎𝑥
𝑠𝑚𝑖𝑛

)︂ 1
𝑁−1

. (9)

Fig. 2. Distribution of Morlet wavelet spectrum using
different scale systems: distribution using a linear scal-
ing system (a); distribution using logarithmic scaling

system (b)

With discrete transform, the maximum wavelet
frequency is limited by the sampling frequency, and
according to the Nyquist-Shannon theorem it is 𝑓𝑠/2.
At the same time, the minimum frequency is limited by
the signal length and depends on wavelet scaling. The
maximum wavelet transform frequency is 1/𝑇𝑠𝑖𝑔𝑛𝑎𝑙 =
𝑓𝑠/𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠, where 𝑓𝑠 – sampling frequency. Also, the
minimum and maximum frequency of a signal can be
described by the frequency range of the signal itself.
Using (6) or (7), it can be expressed maximum and
minimum scale, which according to formulas (8), (9)
can be turned into a uniformly spaced sequence of
logarithmic scales.

To test the proposed algorithms, the MIT-BIH
Arrhythmia Database [15] and Paroxysmal Atrial
Fibrillation Events Detection from Dynamic ECG
Recordings [16] databases were used. The first database
was chosen due to the presence of annotated cardiac
cycles and other cardiac events. The second database
was chosen because it contains 100 ECG recordings
of healthy people with a duration more than three
minutes and high sampling frequency (about 500 Hz).

Also, to analyze the results and modifications, simi-
larity measurement functions such as Pearson correlati-
on [17] and cosine similarity [18] were used, and binary
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classification scores, such as sensitivity, specificity, and
overall accuracy were calculated as well [19].

To analyze the features selection quality, based on
the proposed methods, common neural network archi-
tectures were selected [20], such as ResNet, DenseNet,
MobileNet v2, MobileNet v3, ShuffleNet, Resnext 50.

3 Modifications

Since the basis of the CWT (1) function is a
cross-correlation, and the coefficients of the conti-
nuous wavelet transform express the cross-correlation
coefficients between the original signal and the shifted
scaled mother wavelet [21], the obtained correlation
coefficients were filtered using some correction functi-
on (𝑓𝑠𝑐𝑎𝑙𝑒). Then the formula for the direct Wavelet
transform with this modification will be:

𝐶𝑊𝑇 (𝑠, 𝜏) =

=

∫︁ ∞

−∞
𝑥 (𝑡) * 𝜓′( 𝑡−𝜏

𝑠 ) * 𝑓𝑠𝑐𝑎𝑙𝑒 (𝑥 (𝑡) , 𝜓
′ (𝑡−𝜏) /𝑠) 𝑑𝑡,

(10)

where 𝑓𝑠𝑐𝑎𝑙𝑒 (𝑥 (𝑡) , 𝜓
′ (𝑡− 𝜏) /𝑠) – a scaling function

that depends on the current value (𝑥 (𝑡)) and the
current value of the wavelet (𝜓′ (𝑡)) depending on the
value of the scale factor 𝑠 and offset 𝜏 , 𝜓′ – a modified
wavelet that normalizes the amplitude of the scaled
wavelet function to a certain target amplitude 𝐴, which
must be highlighted from the signal.

The main idea is to compare at each iteration the
amplitude of each signal component with a modified
wavelet 𝜓′ that has a target amplitude 𝐴. Using the
scaling function 𝑓𝑠𝑐𝑎𝑙𝑒, in the case of similar ampli-
tudes, the value of 𝐶𝑊𝑇 (𝑠, 𝜏) will be amplified, and in
the case of a difference, the coefficients will be reduced
or reset to zero.

The modified wavelet 𝜓′(𝑡) can be described by the
following formula:

𝜓′(𝑡) = 𝐴×
1√
|𝑠|
𝜓 ((𝑡− 𝜏) /𝑠)

𝑚𝑎𝑥

(︂⃒⃒⃒⃒
1√
|𝑠|
𝜓 ((𝑡− 𝜏) /𝑠)

⃒⃒⃒⃒)︂ , (11)

where 𝐴 – target amplitude, 𝜓 ((𝑡− 𝜏)/𝑠) – time shi-
fted and scaled mother wavelet.

The following function may be suitable for 𝑓𝑠𝑐𝑎𝑙𝑒 in
(10):

𝑓𝑠𝑐𝑎𝑙𝑒 (𝑎, 𝑏) =

(︂
min (|𝑎| , |𝑏|)
max (|𝑎| , |𝑏|)

)︂𝑞
, (12)

where 𝑎, 𝑏 – values of comparing, 𝑞 – quality factor,
which characterizes the degree of function increasing
according to degree of similarity 𝑎 and 𝑏.

As can be seen in Fig. 3, the more the 𝑎/𝑏 ratio
moves away from 1, the smaller scaling factor becomes.
Values of the 𝑞 parameter set the rate at which the
scaling factor decreases, making the bandwidth of
acceptable amplitude ratios narrower as the quality
factor 𝑞 increases.

Fig. 3. Dependence of the 𝑓𝑠𝑐𝑎𝑙𝑒 function on the 𝑎/𝑏
ratio for different values of the quality factor 𝑞

Thus, the closer the amplitude of the compared
values, the higher the scaling factor 𝑓𝑠𝑐𝑎𝑙𝑒 will be. This
graph is symmetric about 0, and have the same di-
stribution for negative 𝑎/𝑏. To more precisely control
the range of target amplitudes, it can be used other
types of windows. For example, to isolate components
from a signal in the range of 5-20 mV, a target ampli-
tude 𝐴 can be selected as 10 mV and apply a unit
rectangular window in the range 𝑎/𝑏 in [0.5-2]. In such
a case, components beyond 5-20 mV will be suppressed
by the modified CWT. Also, to minimize distortions
associated with the choice of a rectangular window,
other types of windows could be used, for example the
Tukey window [8].

To restore the signal with saving the influence of the
scaling function, it can be used the standard formula
of the inverse wavelet transform (3). But since the
inverse transform uses an unmodified wavelet, and the
direct modified transform used a scaled wavelet 𝜓′, the
influence of the modified wavelet can be corrected using
the following formula:

𝑥 (𝑡) = 𝐶−1
𝜓

∫︁ ∞

0

∫︁ ∞

−∞
𝑋 (𝑠, 𝜏)

1√︀
|𝑠|

̃︀𝜓(︂
𝑡− 𝜏

𝑠

)︂ 𝑚𝑎𝑥

(︂⃒⃒⃒⃒
1√
|𝑠|
𝜓
(︀
𝑡−𝜏
𝑠

)︀⃒⃒⃒⃒)︂
𝐴

𝜓′
(︂
𝑡− 𝜏

𝑠

)︂
𝑑𝜏
𝑑𝑠

𝑠2
,

(13)



Виявлення нейронними мережами низькоамплiтудних компонентiв на ЕКГ за допомогою модифiкованого вейвлет-. . . 51

where 𝑥 (𝑡) – the initial signal, 𝐶−1
𝜓 – normalization

coefficient, 𝑋 (𝑠, 𝜏) – coefficients obtained after modi-
fied CWT of signal x(t), 1√

|𝑠|
– normalization factor,

𝜓 (𝑡) – mother wavelet, which uses for direct wavelet
transformation, 𝜓′ (𝑡) – modified wavelet using (11).

For testing proposed CWT modification, two arti-
ficial tested signals were created. The tested si-
gnal (Fig. 4c) was created as subsequence of three
heterogeneous sinusoidal signals. The first component
of this signal was a 30 Hz sine wave at unity ampli-
tude with high frequency noise, making the sine wave
distorted and spread in the frequency domain. The
second component was a sinusoid with a smoothly
varying frequency of 1-10 Hz with unity amplitude.
This makes this signal fragment non-stationary in the
frequency domain. The third component was sinusoid
with a frequency of 30 Hz and low amplitude, about
0.025. The sampling rate of tested signal was 500Hz
and duration about 1.7 seconds. The component with
low amplitude is 40 times smaller than other signal
components. Thus, the main power spectrum of the
scalogram fall on the high-amplitude components of
the signal, and the low-amplitude component was indi-
stinguishable.

Using the modified CWT (10), it is possible to
significantly increase the scale resolution of the low-
amplitude component on the scalogram (Fig. 4a)
and significantly increase its amplitude during inverse
transformation (13) (Fig. 4d). For the modified
transformation obtained in Fig. 4a, the Morlet wavelet
was chosen 𝑤0 = 6 rad/sample, a linear system of 50
scaling coefficients within the range of 10 to 200 scales

was used, with a target amplitude of 𝐴 = 0.025 in (11)
and a quality factor of 𝑞 = 5 for (12).

When analyzing the reconstructed signal (Fig. 4d)
as well as the CWT scalogram (Fig. 4a), it was noticed
that high-amplitude components was not sufficiently
suppressed and some fluctuations are observed on
the graph (Fig. 4d) within 0.5-1.25 seconds. These
fluctuations can be caused by the fact that, over a
certain time range, the analyzing modified wavelet
function can coincide in amplitude and partially in
shape with the analyzed signal. To smooth out these
fluctuations, a modification that will be described
further may be useful.

The other signal for testing (Fig. 4e) was an arti-
ficial cardiac cycle with LVP, LAP, where the late
potentials are a superposition of several sinusoids in
the frequency range of 80-120 Hz and amplitude about
35 uV, like in Fig. 1a. The sampling rate of this si-
gnal was 500 Hz and duration about 0.8 seconds. For
modified CWT (10) the linear 50 scales system was
used within the range of 3 to 200 scales, with a target
amplitude of 𝐴 = 0.035 and quality factor of 𝑞 = 5.

Analyzing the coefficients of the modified CWT
(Fig. 4b), obtained from the test signal of the cardiac
cycle with late potentials (Fig. 4e), it can be noticed
that although there are distinguishable peaks in the
frequency range of 80-100 Hz, the energy of other
components with higher amplitudes is not sufficiently
suppressed. A similar result can be observed when
analyzing the reconstructed signal (Fig. 4f). Although
there are some peaks and fluctuations within time of
late potentials, the selection of late potentials from the
signal is insufficient.

Fig. 4. Results of continuous wavelet transform and signal reconstruction, obtained using a modified wavelet
transform algorithm (10); scalogram of CWT coefficients for heterogeneous sinusoidal signal (a); scalogram for
signal of ECG cardiac cycle with LVP and LAP (b); original heterogeneous sinusoidal signal (c); reconstruction
obtained by modified inverse transform (13) for heterogeneous sinusoidal signal (d); original signal of cardiac
cycle with LVP and LAP (e); reconstruction obtained by modified inverse transform (13) for signal of cardiac

cycle with LVP and LAP (f)
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This difference in the results between the two test
signals can be explained by the fact that the sinusoidal
signal (Fig. 4с) is very similar in shape to the analyzing
Morlet wavelet. In addition, the Morlet wavelet and
fragments of the test signal with sinusoids (Fig. 4c)
oscillate around 0, which gives a greater coincidence
of amplitudes and, as a result, a greater value of the
modified wavelet transform coefficients. On the other
hand, although the late potentials are close in shape,
frequency and amplitude to the analyzing wavelet, on
the test signal (Fig. 4e) they are shifted in amplitude
relative to 0. This key difference from a signal with
sinusoids leads to the fact that the scaling functi-
on inaccurate calculates scaling coefficients and, as a
result, does not effectively identify componentswith
the target amplitude. In this case, an approach is
needed that is less sensitive to fluctuations in the
amplitude of the analyzed signal.

To minimize distortions associated with the ampli-
tude shifting of the analyzing wavelet and analyzed
signal, it could possible to replace the procedure of
calculating cross-correlation with a cosine similarity in
the wavelet transform:

𝐶𝑊𝑇𝑐𝑜𝑠 (𝑠, 𝜏) =

=

∫︀∞
−∞ 𝑥 (𝑡) * 𝜓′* (︀ 𝑡−𝜏

𝑠

)︀
𝑑𝑡√︁∫︀∞

−∞ |𝑥 (𝑡)|2 𝑑𝑡
√︁∫︀∞

−∞

⃒⃒
𝜓′

(︀
𝑡−𝜏
𝑠

)︀⃒⃒2
𝑑𝑡
, (14)

where 𝑥 (𝑡) – analyzed signal, 𝜓′ (𝑡) – modified wavelet
(11), 𝜓′* (𝑡) – complex conjugate of modified wavelet.

Thus, the result of the wavelet transform will be
a measure of cosine similarity between the analyzed
signal and the modified shifted and scaled mother
wavelet. Then the scaling function will be applied as
follows:

𝐶𝑊𝑇𝑚𝑜𝑑𝑖𝑓 (𝑠, 𝜏) =

=

∫︀∞
−∞ 𝑥 (𝑡) * 𝜓′* (︀ 𝑡−𝜏

𝑠

)︀
𝑑𝑡√︁∫︀∞

−∞ |𝑥 (𝑡)|2 𝑑𝑡
√︁∫︀∞

−∞

⃒⃒
𝜓′

(︀
𝑡−𝜏
𝑠

)︀⃒⃒2
𝑑𝑡

×

×
∫︁ ∞

−∞
𝑓𝑠𝑐𝑎𝑙𝑒 (𝑥 (𝑡)− 𝑐𝑜𝑟𝑒𝑐𝑡 (𝑡) , 𝐴) 𝑑𝑡, (15)

where x(t) – analyzed signal, 𝜓′ (𝑡) – modified wavelet
(11), 𝜓′* (𝑡) – complex conjugate of modified wavelet,
𝑓𝑠𝑐𝑎𝑙𝑒 – scale function (12), 𝐴 – target amplitude
of the selecting components, 𝑐𝑜𝑟𝑒𝑐𝑡 (𝑡) – correction
function that can adjust the offsets of interested signal
fragments relative to 0.

In (15), compared to (10), the integral value of
the scaling function is multiplied by the result of
the cosine similarity. This procedure is intended to
simplify calculations and to smooth out the scaling
factor. It also eliminates conversion noise caused by
rapid fluctuations of the signal under study and the
characteristics of the scanning wavelet. For simpli-
fy demonstration of some operations of this modified

transform using a fragment of artificial non-stationary
signal, the calculation scheme was presented (Fig. 5)

Fig. 5. Calculation peculiarities scheme of modified
CWT; coefficients calculation based on the modified
wavelet 𝜓′ (a); an example of building a scalogram
based on calculated coefficients (b); example of modi-
fied CWT coefficient calculation without correction
function (c), example of modified CWT coefficient

calculation using the correction function (d).

Since the Morlet wavelet is modeled by a Gaussian
envelope (3), and based on the fact that 99.7% of the
entire area of the Gaussian curve is concentrated in the
range of ± 3𝜎, it is possible to determine the length of
the wavelet in seconds or samples, cut it and compare
it with a fragment of the analyzed signal with the
corresponding duration. The proposed algorithm for
calculating the modified CWT for a discrete signal is
based on this principle.

Fig. 5a shows how the scanning wavelet shifts along
the analyzed signal, and at each iteration 𝐶𝑊𝑇𝑚𝑜𝑑𝑖𝑓
is calculated started from certain sample 𝑛.

Based on the obtained coefficients, a fragment of
the scalogram (Fig. 5b) is constructed for a given
scales. Also Fig. 5c, d shows how the correction functi-
on affects the result of the coefficient calculating. On
Fig. 5c the low-frequency baseline drift distorts the
signal fragment and makes it shifted relative to zero.
Fig. 5d shows the result of the correction functi-
on applying. The correction function eliminates the
influence of baseline drift allowing the signal and
scanning wavelet be compared more accurately. In
the simplest case, the correction function removes the
mean from the compared signal fragment on each
iteration, making its values symmetrical relative to 0.

Restoring a signal while maintaining amplitude
selection transformation can be a computationally diffi-
cult task that requires taking into account the influence
of all scaling and correction functions and may be
the subject of additional research. This study proposes
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a simplified recovery procedure:

𝑥 (𝑡) = 𝐶−1
𝜓 ×

×
∫︁ ∞

0

∫︁ ∞

−∞
𝐶𝑊𝑇𝑚𝑜𝑑𝑖𝑓 (𝑠,𝜏)𝜓

′
(︂
𝑡−𝜏
𝑠

)︂
𝐶𝑊𝑇 (𝑠,𝜏)𝑑𝜏

𝑑𝑠

𝑠2
,

(16)

where 𝐶𝑊𝑇𝑚𝑜𝑑𝑖𝑓 (𝑠, 𝜏) – coefficients of modifi-
ed wavelet transform (15), 𝜓′ – modified wavelet
(11), 𝐶𝑊𝑇 (𝑠, 𝜏) – coefficients of continuous wavelet
transform (1), 𝐶−1

𝜓 normalization coefficient depends
on wavelet 𝜓.

The main principle of reconstruction (16) is that
since the obtained coefficients of the modified CWT lie
in the range from 0 to 1, which makes them compared
to the scaling coefficients for classical CWT. In the
case of maximum similarity of amplitudes and shape,
the energy of the classical CWT will be transferred in
full, but if the amplitude and shape are different, the
energy of the classical CWT will be reduced by the
modified CWT coefficients.

4 Results and discussion

To evaluate the results of the modified wavelet,
transform on the base of the algorithm described above,
testing was carried out using an artificial and real ECG
signal with late ventricular and atrial potentials as a
target low amplitude components.

The artificial signal for testing (Fig. 6b) was
generated as QRS complex with added LVP, LAP,
where the late potentials are a superposition of several
sinusoids in the frequency range of 80-120 Hz and
amplitude about 35 uV, like in Fig. 1a. and Fig. 4e. The
duration of artificial signal about 0.6 sec and sampling
rate is 1000 Hz.

The real signal with sampling frequency of 500Hz
was chosen from MIT-BIH Arrhythmia Database. The
presence of R peaks annotated by doctors in this
database reduces the averaged cardiac cycle constructi-
on error associated with incorrectly detected R peaks
by automated algorithms. Using the real signal of
healthy person from this database, the late ventricular
potentials was added in 0.035 second after each R peak.
Using this modified signal, the averaged QRS complex
with VLP was generated (Fig. 6e). The late potentials
were generated as a hyperposition of action potentials
which was simulated using parallel conductance model
[22] for a number of cells.

For the artificial signal, a modified CWT with a
Morlet wavelet was applied with 𝜔0 = 6 [rad/sample],
the target amplitude 𝐴 was chosen as 0.035 and quality
factor 𝑞 = 4, and the subtraction of the average from
signal part was chosen as a correction function at each
iteration. The scale system was chosen logarithmic (9)
for the frequency range 40-200 Hz, with a number of 40
scales. For the real signal, exactly the same parameters
were chosen, except for the target amplitude 𝐴, which
was 0.025.

Fig. 6. Modified CWT (15) and reconstruction for signals with late potentials; modified CWT scalogram for
artificial signal with VLP and ALP (a); artificial signal with VLP and ALP (b); reconstruction of artificial
signal (c); modified CWT scalogram for real QRS wave signal with VLP (d); real QRS wave signal with
VLP (e); reconstruction for real signal (f); manifestation of VLP and ALP on a scalogram (1, 2); manifestation
of VLP and ALP on artificial signal and corresponding fragments on reconstruction (3, 4); manifestation of
VLP on a scalogram (5); manifestation of VLP on real QRS wave signal and corresponding fragments on

reconstruction (6, 7)
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Analyzing the scalograms (Fig. 6 a, d), obtained us-
ing a modified wavelet transform (15), it can be seen
that in the frequency and time ranges of the presented
late potentials there are highlighted peaks of spectral
power (Fig. 6 1, 2, 5). These peaks do not merge
with neighboring coefficients, and high-amplitude si-
gnal components do not distort the time-frequency
representation in target location. This peculiarity gi-
ves the opportunity to analyze late potentials in the
time-frequency domain more accurately.

Analyzing the signal reconstructions (Fig. 6 c, f), it
can be seen the clear signal bursts that correspond
to the time frame of the low-amplitude components
(Fig. 6 3, 4, 7), and the high-amplitude components
are significantly suppressed. For comparison, Fig. 7
shows a scalogram of a classical CWT for a simi-
lar signal built according to the same parameters as
the modified CWT. In this case, it can be seen that
the greatest spectral power is concentrated around
the high-amplitude high-frequency component of the
R peak. In addition, the localization of late potenti-
als on the scalogram is complicated and noisy due
to the coefficients of other high-amplitude signal
components. Proposed modified CWT allows to distin-
guish those oscillations that could not be detected by
classical wavelet transform. For example, in Fig. 6f
fluctuations are observed in the zone of late potenti-
als (Fig. 6 6), which are indistinct in the analyzed
signal and scalogram but are very clearly visible in the
reconstruction. These fluctuations were not artificially
imposed as in (Fig. 6 7), so it may belong to the patient
whose ECG was used for this comparison.

Fig. 7. The real cardiac cycle of ECG signal with LVP
and CWT scalogram that was obtained using the tradi-
tional CWT with Morlet wavelet; CWT scalogram (a);

real QRS complex with LVP (b).

To visually analyze the effect of noise on the artifi-
cial signal (Fig. 6b), noise with a signal to noise ratio
(SNR) of 35 dB was added. This noise appears in
the reconstruction (Fig. 6c) when the signal amplitude
fluctuates close to zero, for example in the range of 0.4-
0.6 seconds, and also partially distorts the waveform
in the range of late potentials. This disadvantage can
be eliminated by using more detailed scaling, different
correction functions or could be solved during the
further research. But in real high-resolution cardio-

graphy, the noise level on the average cardiac cycle is
lower, so the influence of noise was less observed. When
assessing the Pearson correlation coefficient between
the late potentials on reconstructions and late potenti-
als on the averaged cardiac cycle, it was obtained a
value of 0.6. Such distortion may be caused by noise,
and may also appeared in the result of scaling functions
usage. Other reason could be the inverse transformati-
on inaccuracies. Improving the quality of reconstructi-
on when using proposed modified wavelet transform is
also could be the subject of further research.

To recognize two classes (ECG with LVP and ECG
without LVP) based on the constructed scalograms,
the Paroxysmal Atrial Fibrillation Events Detection
from Dynamic ECG Recordings database [16] was
used. About 100 records with a normal 12 leads ECG
were selected from this database. The generated late
potentials of 0.1 mV amplitude were superimposed on
each lead as in Fig. 6e. Then the average cardiac cycle
was obtained using an automatic cardiac cycle detector
[23].

For each averaged cardiac cycle with and without
VLP, a scalogram was calculated using a modified
CWT, as well as a classic CWT. For the conti-
nuous wavelet transform, the Morlet wavelet with
𝜔0=6[rad/sample] was chosen. A logarithmic scale
system was calculated for the frequency range of 40-
200 Hz and the number of scales was 40. For the
modified CWT, the target amplitude 𝐴 was chosen
as 0.06, the quality factor 𝑞 = 2, and the subtracti-
on of the average value from signal part was chosen
as a correction function at each iteration. Thus, one
thousand scalograms for averaged cardiac cycles with
LVP and one thousand scalograms without LVP was
calculated using the modified CWT. And also, the
same amount scalograms with and without LVP was
calculated using classic CWT. Based on these data,
various common neural networks models were trained.
Train to test split ratio was 85%/15%. For all types
of tested neural networks optimizer Adam [24] was
chosen. The learning rate was set as 0.01, batch size
was chosen as 70 scalograms per batch, the number of
epochs was set as 10.

Analyzing the graphs of the classification accuracy
(Fig. 8 a-f), it can be concluded that for all
presented neural network architectures, the classificati-
on accuracy at the first training epoch when using the
modified CWT is significantly higher than the accuracy
using the classical CWT. The convergence rate of
architectures which trains using a modified CWT was
much higher. Despite the fact that the classification
accuracy of both methods was approximately equal
at 10th epoch, at epochs 1-4 the quality of classifi-
cation was generally higher with the modified CWT.
In addition, there are models that stucked in a local
minimum (Fig. 8 d, f) and until tenth epoch could not
improve the classification accuracy using the classic
CWT. At the same time, models that were trained on
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modified CWT did not get stuck in the local minima
and reaches much higher classification accuracy. These
results indicates that the modified CWT is capable of
much more accurately identifying the required features
from the signal under study.

Analyzing the classification results based on the
sensitivity, specificity and overall accuracy of the trai-
ned models (Table 1), it can be seen that the models

that were trained on CWT data in most cases showed
higher classification accuracy than the algorithms that
were trained on the basis of the classic CWT. For
the neural networks MobileNet v3 and ResNet 50, ten
epochs were not enough to increase the classification
accuracy beyond 50% for the classic CWT. Besides
that, for the modified CWT the classification accuracy
was much higher and reached 96%.

Fig. 8. Accuracy comparing of training process of different neural networks for classical and modified CWT
algorithm; accuracy of ResNet network by each epoch (a); accuracy of DenseNet network (b); accuracy of
MobileNet v2 network (c); accuracy of MobileNet v3 network (d); accuracy of ShuffleNet network (e); accuracy

of Resnext50 network (f)

Табл. 1 Classification quality comparison of common neural network architectures trained on data generated
by modified and normal CWT

Model name Sensitivity Specificity Accuracy

norm cwt mod cwt norm cwt mod cwt norm cwt mod cwt

ResNet 0.82 0.9 1 0.98 0.97 0.99

DenseNet 0.97 0.96 0.99 0.98 0.98 0.98

MobileNet v2 0.96 0.91 0.99 0.99 0.98 0.95

MobileNet v3 1 1 0 0.64 0.5 0.83

ShuffleNet 0.93 0.97 0.99 0.99 0.96 0.98

Resnext 50 0 0.98 1 0.94 0.5 0.96

Conclusion

This study analyzed methods of time-frequency
analysis like Short-time Fourier transform (STFT),
Wigner-Vile transform, Continuous wavelet transform

(CWT) and also deep learning models for low
components detection in ECG.

For increasing low components detection ability, the
CWT modifications were proposed. Such modifications
as scaling function implementation, wavelet function
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modification, as well as the use of cosine similarity
in the process of constructing CWT coefficients have
shown their effectiveness in the task of identifying low-
amplitude components from artificial and real signals.

Based on the analysis of the issue of choosing a
scaling system for CWT, a logarithmic scale system
was chosen and described for more detailed localization
of low-amplitude components.

The modifications that were proposed for the
wavelet transform procedure showed the ability to
identify signal components with the target amplitudes
and reduce other non-target components.

The results of testing various models of neural
networks as well as visual analysis showed that the
proposed modified wavelet transform algorithm is
capable of identifying low-amplitude components from
the time-frequency representation of the signal, where
almost the entire power spectrum is occupied by
other high-amplitude components. For example, the
proposed modifications can achieve a classification
accuracy of 99% and increase the accuracy of neural
networks training obtained with scalograms based on
the classical wavelet transform for 1-49%.

The proposed method also helps to increase the
speed and stability of neural network training.

The suggested modifications of the wavelet
transform can be widely used in medicine to identi-
fy low-amplitude components of the ECG and other
biological signals, as well as in other industries.

References

[1] Hu Y., Zhao Y., Liu J., Pang J., Zhang C., and Li P. (2020).
An effective frequency-domain feature of atrial fibrillati-
on based on time–frequency analysis. BMC Med. Inform.
Decis. Making, Vol. 20, No. 1, DOI: 10.1186/s12911-020-
01337-1.

[2] Ceschi R., Gautier J.-L. (2017). Fourier Transform.
CHAPTER 2 In: Fourier Analysis. Wiley, pp. 39-96, DOI:
10.1002/9781119388944.ch2.

[3] Borisagar K. R., Thanki R. M., and Sedani B. S. (2018).
Fourier Transform, Short-Time Fourier Transform, and
Wavelet Transform. In: Speech Enhancement Techniques
for Digital Hearing Aids. Springer International Publish-
ing, pp. 63-74. DOI: 10.1007/978-3-319-96821-6_4.

[4] Lyon D. (2009). The Discrete Fourier Transform, Part 4:
Spectral Leakage. J. Object Technol., Vol. 8, No. 7, p. 23.
DOI: 10.5381/jot.2009.8.7.c2.

[5] Athanassoulis A. G., Mauser N. J., and Paul T.
(2009). Coarse-scale representations and smoothed Wigner
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Виявлення нейронними мережами
низькоамплiтудних компонентiв на
ЕКГ за допомогою модифiкованого
вейвлет-перетворення

Мневець А. В., Iванушкiна Н. Г.

Дане дослiдження присвячено iдентифiкацiї низько-
амплiтудних компонентiв ЕКГ-сигналiв рiзними мето-
дами частотно-часового аналiзу, коли основний спектр
потужностi припадає на високоамплiтуднi компоненти.
Також було проаналiзовано проблему вибору системи
масштабiв для визначення низькоамплiтудних компо-
нентiв на скейлограмi за допомогою моделей штучно-
го iнтелекту. Як результат дослiдження, були запро-
понованi кiлька модифiкацiй безперервного вейвлет-
перетворення. Перша модифiкацiя базується на вико-
ристаннi масштабувальної функцiї та модифiкованого
вейвлета. Друга модифiкацiя базується на використан-
нi косинусної подiбностi на кожнiй iтерацiї згортки
з подальшим застосуванням масштабувальної функцiї.
Основна iдея дослiдження полягає в тому, щоб моди-
фiкувати вейвлет-перетворення таким чином, щоб ви-
дiлити компоненти з цiльовою амплiтудою та зменшити

всi iншi компоненти, якi ускладнюють аналiз цiкавлячих
фрагментiв сигналу нейронними мережами. Також були
запропонованi можливi процедури вiдновлення сигналу
для збереження ефекту використання масштабувальних
модифiкацiй. Тестування запропонованих модифiкова-
них алгоритмiв було проведено на основi штучно створе-
них сигналiв, а також на основi реальних сигналiв ЕКГ
з накладеними на них пiзнiми потенцiалами. Вiзуальний
аналiз скейлограм та вiдновлених сигналiв, отриманих
за допомогою модифiкованого вейвлет-перетворення,
показав, що модифiковане вейвлет-перетворення зда-
тне видiляти низькоамплiтуднi компоненти зi сигналу
з набагато бiльшою спектральною потужнiстю, нiж пе-
ретворення без модифiкацiй. Крiм того, була перевiрена
здатнiсть загальних моделей нейронних мереж розрiзня-
ти серцевi цикли з пiзнiми потенцiалами та без них. У
результатi було виявлено, що моделi, якi тренувалися
на скейлограмах, отриманих за допомогою модифiкова-
ного вейвлет-перетворення, навчаються швидше i менш
схильнi до застрягання в локальних мiнiмумах. Резуль-
тати класифiкацiї сигналiв з пiзнiми потенцiалами та без
них на основi натренованих моделей нейронних мереж
показали, що навчання за допомогою скейлограм, отри-
маних на основi модифiкованого вейвлет-перетворення,
дозволяє досягти 99% точностi класифiкацiї, що на 1-
49% бiльше, нiж при використаннi скейлограм, отрима-
них на основi класичного вейвлет-перетворення.
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