
Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia, 2024, Iss. 98, pp. 46–54

UDC 614.3:007.5

Perspective of Creating Low-Cost Medical

Assistant Robot Based on Waffle PI4 Platform

with Palm Vein Pattern Scanner

Anufriiev V. V., Levchenko O. O., Levchenko Ye. V., Chekubasheva V. A., Glukhov O. V., Galat O. B.

Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

E-mail: valentyn.anufriiev@nure.ua

The purpose of this study is to develop a set of modifications for the TurtleBot 3 Waffle Pi robotic platform.
One of the key achievements of this work is the creation of a biometric identification system based on the
venous pattern of the palm. The principle of operation of the identification system is based on the use
of infrared radiation absorbed by hemoglobin in the venous system of the palm. The absorbed radiation
creates a clear pattern that can be captured using a camera without an infrared filter. The resulting image is
pre-processed to reduce noise and unify with other images for further use in training a convolutional neural
network used for patient identification. This identification method allows for high-speed and accurate patient
identification, even with dirt or scratches on the palm. The described modifications are aimed at expanding
the capabilities of the platform for military medical applications. By integrating these modifications into the
TurtleBot 3 Waffle Pi robotic platform, military and civilian hospitals can improve their ability to provide
timely and accurate medical care to those in need.

Keywords: robot; TurtleBot; Raspberry Pi; biometrical scanner; image skeletonization; convolutional neural
network

DOI: 10.20535/RADAP.2024.98.46-54

Introduction

Military medical facilities and the personnel who
serve them play a particularly important role under
martial law. Military medicine is currently a fairly
developed field in Ukraine that meets all the modern
trends typical of developed countries in Europe and the
world. Nevertheless, given the overcrowding in hospi-
tals, it is very difficult for staff to provide timely and
appropriate assistance to all victims. After analyzing
the infectious diseases typical of the military risk group
(such as pulmonary tuberculosis, viral hemorrhagic
fevers, etc.) [1], it was decided to develop a robotic
system, using the best practices of our group’s previous
studies [2,3]. It is capable of autonomously performing
the typical functions of nursing staff, allowing workers
to provide emergency care to soldiers who have suffered
serious injuries, such as shrapnel.

1 Related works

A medical assistant robot is an autonomous or
semi-autonomous robot designed to assist healthcare
professionals in performing various medical tasks, such
as surgery, patient care and diagnostics, in a hospital or
clinic setting. They are equipped with sensors, cameras,

and other technologies to perform tasks with precision
and efficiency. In infectious disease wards, robot assi-
stants are of paramount importance due to their ability
to minimize the risk of infections. They can perform the
following tasks:

- clean and disinfect wards, thereby reducing the
workload of healthcare workers and reducing the
likelihood of cross-infection [4];

- deliver medicines and supplies, ensuring timely
and accurate distribution, while reducing the
need for direct contact with patients [5, 6];

- monitor the microclimate in hospital wards,
ensuring optimal conditions for patient comfort
and recovery, while reducing the risk of infection
transmission;

- track the patient’s location in the hospital, provi-
ding real-time information to medical staff and
ensuring timely response to patient needs, thus
improving overall patient care and safety [7, 8].

2 Research Methodology

The platform for the modifications is a TurtleBot 3
with a Raspberry Pi 3 as a computing element. This
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mobile robot is widely used to maintain sanitary condi-
tions in medical and scientific facilities and as a data
collection system. This is all possible due to:

1. open-source software;

2. portability of the design;

3. compatibility with ROS (Robot Operating
System);

4. modularity.

In the article, the robot platform paired with the
OpenCR module (power supply, spatial orientation)
and the Raspberry Pi 3 Model B microcomputer
(remote control, control of sensors, disinfection module,
and UI-UX interface) [3].

In this work, we propose to replace the Raspberry
Pi 3 with the Raspberry Pi 4 as a strategic move
designed to yield multiple performance benefits, as
substantiated by prior studies. Implemented modifi-
cations and schematic diagram of the medical robot
assistant are shown in Figure 1. The anticipated
advantages encompass heightened processing capabi-
lities and augmented data transfer speed, expedited
processing of graphical data, elevated data transfer
rates facilitated by the inclusion of a 1Gb Ethernet
chip and multichannel Wi-Fi connectivity compliant
with 802.11 b/g/n/ac standards, and the prospect of
swifter data transmission and an expanded capacity
for connected devices, courtesy of BLE 5.0 technology.
This proposition enhances the robotic system’s operati-
onal efficiency and overall capabilities under the
proposed research.

OpenCR module using SLAM (simultaneous locali-
zation and mapping) for spatial navigation [9–11]
remains unchanged. SLAM technique uses a probabili-
stic approach, which applies a probability distribution

to predict the robot’s and landmark’s location from the
generated map. The probability distribution form, 𝑃 is
defined as:

𝑃 (𝑥𝑘,𝑚|𝑍𝑘, 𝑈𝑘) , (1)

where 𝑘 is time constant, 𝑥𝑘 is robot location, 𝑍𝑘

is a sequence of measurements between robot and
landmarks assuming one measurement per time step,
𝑈𝑘 is a sequence of robot odometry or relative motion.

The process of patient identification involves several
steps, the first of which is to obtain an image of the
vein pattern of the palm. This is possible because of
infrared LEDs and a camera without an IR filter. In
this wavelength range (700–900 nm), the absorption
coefficient of biological tissues is minimal due to the
high water content, which allows you to obtain an
image of the palm veins.

Once the image is obtained, useful information is
extracted using image preprocessing. For this purpose,
standard digital image processing methods were used,
including cropping, changing color models, histogram
equalization, and skeletonization. Histogram equali-
zation is the process of evenly distributing the intensity
of an image to increase contrast.

For each step of image processing, we calculated
statistical parameters for analyzing the probability of
detecting helpful information, including the signal-to-
noise ratio 𝜙, the probability of correct signal detecti-
on 𝑑, and the probability of false signal detection 𝑓 .

Signal-to-noise ratio:

𝜙 =
𝜇𝑠√︁
𝜎2
𝑆+𝑁

, (2)

where 𝜇𝑆 is an average value of the signal component of
the image, 𝜎2

𝑆+𝑁 is a variance of the signal component
with the presence of noise.
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Fig. 1. Block diagram of the medical robot assistant with implemented modifications



48 Ануфрiєв В. В., Левченко О. О., Левченко Є. В., Чекубашева В. А., Глухов О. В., Галат О. Б.

Probability of correct signal detection:

𝑑 =

∫︁ ∞

𝑈𝑇

1√︁
2𝜋𝜎2

𝑆+𝑁

𝑒

(𝑈−𝜇𝑆+𝑁 )2

2𝜎2
𝑆+𝑁 𝑑𝑈 , (3)

where 𝜇𝑆+𝑁 is an average value of the signal
component of the image, 𝑈𝑇 is a threshold value.

Probability of false signal detection:

𝑓 =

∫︁ ∞

𝑈𝑇

1√︀
2𝜋𝜎2

𝑁

𝑒
(𝑈−𝜇𝑁 )2

2𝜎2
𝑁 𝑑𝑈 , (4)

where 𝜎2
𝑁 is an average value of the signal component

of the image, 𝜇𝑁 is an average value of the noise
component.

Assuming 𝑓 as an image represented as a matrix
of integer pixel intensities ranging from 0 to 𝐿 − 1,
where 𝐿 is the number of possible intensity values,
then 𝑝 denotes the normalized histogram of 𝑓 with a
histogram column for each possible intensity:

𝑃𝑛 =
𝑁𝑛∑︀
𝑛 𝑁

, (5)

where 𝑁𝑛 is number of pixels with brightnes 𝑛,∑︀
𝑛 𝑁 is a total number of pixels.
An image with an aligned histogram 𝑔 will be

determined by the equation:

𝑔𝑖,𝑗 = floor

⎛⎝(𝐿− 1)

𝑓𝑖,𝑗∑︁
𝑛=0

𝑝𝑛

⎞⎠ , (6)

where floor() rounds to the nearest lower integer. This
is equivalent to converting pixel intensities, 𝑘, to 𝑓
using a function:

𝑇 (𝑘) = floor

(︃
(𝐿− 1)

𝑘∑︁
𝑛=0

𝑝𝑛

)︃
. (7)

Skeletonization erodes the source image using the
specified structuring element that determines the shape
of a pixel neighborhood over which the minimum is
taken:

𝑑𝑠𝑡(𝑥, 𝑦) = min
(𝑥′,𝑦′)∈element

𝑠𝑟𝑐(𝑥+ 𝑥′, 𝑦 + 𝑦′), (8)

where 𝑑𝑠𝑡 is a output image, 𝑠𝑟𝑐 is input image.
In this work, we employ a Convolutional Neural

Network (CNN) as a robust methodology for identi-
fying and recognizing user’s venous patterns. A
Convolutional Neural Network is a specialized archi-
tecture within the domain of neural networks, extensi-
vely employed by the processing and analysis of
images and videos [12–15]. Its design is tailored to
excel in pattern recognition tasks, showcasing inherited
properties that enhance its effectiveness in discern-
ing intricate patterns within visual data. The CNN
serves as a powerful tool for the precise identification
of venous patterns in the context of current study. A
convolutional neural network includes several layers, as
shown in Figure 2.

An input layer is used to input information for
further processing; Convolutional layer, which applies
filters to the input image to create feature maps. These
maps highlight specific attributes in the image, such as
edges or textures:

𝑆(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑖−𝑚, 𝑗 − 𝑛)𝐾(𝑚,𝑛), (9)

where 𝐼(𝑖, 𝑗) is a pixel value at position (𝑖, 𝑗) in the
input image, 𝐾(𝑚,𝑛) is a filter with size 𝑚 × 𝑛 and
𝑆(𝑖, 𝑗) is ouput feature map.

After convolution, an activation function is applied,
in this case, ReLU, which introduces nonlinearity into
the network by zeroing out negative values:

𝑓(𝑥) = ReLU(𝑥) = max(0, 𝑥). (10)
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Fig. 2. Structure of CNN
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The pooling layer is needed to reduce the size of
the feature map. In this case, it is MaxPooling, which
selects the maximum pixel value in the batch.

𝑃 (𝑖, 𝑗) = max
∀(𝑥,𝑦)∈Pool(𝑖,𝑗)

𝑆(𝑚,𝑛). (11)

After the pooling layer, the output data passes
to the fully connected layer, which integrates the
high-level features extracted by the previous layers to
perform the final task, namely, classifying the input
image:

𝑦 = 𝑓

(︃∑︁
𝑖

𝑤𝑖𝑥𝑖 + 𝑏

)︃
, (12)

where 𝑤𝑖 is a weights, 𝑥𝑖 is a input values, 𝑏 is a bias
and 𝑓 is an activation function.

After the fully connected layer, the data is
transferred to the output layer, which is used to
produce the final result.

3 Results

A palm vein pattern scanner is used to provide
contactless identification. This type of biometric identi-
fication was chosen due to its high level of identification
accuracy, high resistance to changes over time and
injuries to the palm veins, and the absence of the need
for physical contact with the scanner.

The identification system consists of a comput-
ing module, a camera without an IR filter, and an
IR LED unit. The computing module is a central
robot controller (Raspberry Pi 4), and the camera is
a Raspberry Pi Camera module 3 NoIR. The block
diagram of the device is shown in Figure 3.

Camera module
(NoIR)

Palm

Central
controller

Block of
infrared LEDs

Fig. 3. Block diagram of the palm vein pattern scanner

The implemented device consists of: Raspberry Pi
4B (1), Raspberry Pi Camera module 3 NoIR (2), IR
LEDs (3), resistors (4) and is shown in Figure 4.

1 2

4

3

(a)

1

2
3

4

(b)

Fig. 4. Schematic of palm vein scanner (a), experi-
mental setup (b)

Notably, the Raspberry Pi 4b empowers the robot
to gather and transmit data across longer distances
at elevated speed, all while reducing overall energy
consumption.

Algorithm of the device operation [16] is shown on
Figure 5, and goes by following steps:

1. camera initialization and power supply to the
LEDs;

2. take a picture of the palm;

3. image processing;

4. patient identification.

To perform image processing, we implemented
the code using the Python programming language,
leveraging the capabilities of the OpenCV and NumPy
libraries.

The sequence of image processing steps is
illustrated in Figure 6, delineating the various stages
involved in the computational manipulation of the
image data and described below:

1. image resizing and converting to grayscale.
These operations reduce information about the
color parameters of the image, simplifying the
data for further processing. This initial panel
represents the raw, unprocessed image with mi-
nimal contrast between the venous structure and
the background. Here, details are limited, and
the target patterns are poorly distinguished from
surrounding noise;
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2. noise reduction by smoothing the histogram. This
step significantly reduces random pixel intensity
variations, smoothing out the image and clarify-
ing major structures while removing extraneous
noise that could obscure finer details;

3. converting the image to the YUV color model,
and histogram equalization is applied to the
Y channel (brightness). This step improves
brightness and contrast while preserving the
color information in the U and V channels.
By selectively amplifying the target features,
this step increases the overall contrast of the
venous pattern, helping distinguish it from the
background with greater clarity;

4. skeletonization reduces the image to its basic
structure, preserving only key shapes. This
process reduces the venous structure to its
essential contours, creating a ’skeleton’ of the
pattern. As a result, only the primary lines of the
venous network are retained, offering a clear and
highly contrasted representation of the vascular
structure without background interference. This
stage is especially useful for precise identification
of structural boundaries, as it isolates the most
significant linear features of the pattern.
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Fig. 5. Algorithm of the device operation

Based on the obtained results we also plotted the
probability density of the signal and noise components
that are demonstrated in Fig. 7.

Camera image Dimensioning De-noise

Histogram 

equalizationColor modelSkeletonization

Fig. 6. Stages of image analyzing and processing

Fig. 7a shows that the pixel brightness distributi-
on shows a clear signal with a distinct peak, which
means that the grayscale image can still be recogni-
zed against the background of the noise component,
but the probability of false pattern recognizing is
high. Histogram equalization improved the detection
probability (Fig. 7b), although it did not solve the
problem of false positives. Changing the color model
to YUV distributes the signal at higher brightness
levels. This step allows to expand the range of signal
brightness over the entire spectrum (Fig. 7c). Skeletoni-
zation changed the content of the image, resulting in a
predominantly black background and areas of increased
brightness for the signal component representing the
venous pattern. This is reflected by a high concentrati-
on of background components only at lower brightness
levels, while the signal is present over a wide brightness
range. At the same time, the probability of correct
detection of the signal increases due to the fact that
the intersection of the histograms of the useful signal
and the background is minimized (Fig. 7d). The results
are presented in Table 1.

Figure 8 presents a comparative plot illustrat-
ing pixel intensity distribution across a defined line
segment in the image, demonstrating how each stage
of processing affects the contrast and clarity of the
venous pattern. The plot shows four distinct lines, each
corresponding to one stage of image processing: the
dimensioned image (orange line), the de-noised image
(blue line), the color-adjusted image (green line), and
the skeletonized image (red line). This comparative
analysis allows for a quantitative assessment of the
effects of each processing step on the intensity distri-
bution.
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(c)

 

(d)

Fig. 7. Probability density of the signal and noise
components of image processing stages for (a) di-
mensionig image with changed color scheme to gray
shades process, (b) histogram equalization process, (c)
convertation to YUV color model process, (d) image

skeletonization process

Initially, the orange line representing the
unprocessed image shows significant fluctuations, also
indicating a high level of noise and limited contrast
between the venous structure and the background.
This variability in pixel intensity suggests that fine
details of the venous pattern are masked by random
noise and low contrast, making it difficult to identify
distinct vascular features. Following de-noising (blue
line), the intensity fluctuations decrease, demonstrat-
ing successful noise reduction. Current step smooths
the intensity profile, reducing extraneous variations
and beginning to reveal the underlying structure more
clearly.

With the change in color model (green line), the
venous pattern becomes even more pronounced, as
indicated by sharper peaks and valleys in the intensity
plot. This adjustment enhances the contrast, parti-
cularly highlighting the venous structure against the
background tissue. The final red line, representing the
skeletonized image, shows the most distinct intensity
peaks, corresponding to the core lines of the venous
structure, while the background intensity remains mi-
nimal. This stage isolates the primary edges of the
venous network, providing a high-contrast and simpli-
fied representation of the pattern, which is essential for
precise structural analysis.

The calculated parameters according to formulas
(2), (3), (4) is presented in Table 1 and illustrated how
each image processing stage progressively enhances si-
gnal clarity and reduces noise interference, ultimately
improving the detectability of the venous pattern.

Initially, the parameter 𝜙, which indicates the
average signal-to-noise ratio, increases from the initi-
al dimensioning stage to reach its highest value after
skeletonization. This rise in 𝜙 demonstrates that each
processing step strengthens the contrast between the
venous pattern and the background, with skeletonizati-
on providing the clearest delineation.

  

Fig. 8. Stages of image analyzing and processing
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Табл. 1 Results of calculating statistical parameters

Step 𝜙 𝑑 𝑓

Dimensioning 1,149 1 0,975

De-noise 1,262 1 0,992

Change of color model 0,022 0,997 0,816

Skeletonization 1,809 0,940 0,580

Similarly, the signal-to-noise ratio 𝑑 remains stable
through de-noising but declines slightly by the final
stage, likely reflecting the reduction of extraneous
intensity variations as the image focuses on core
structural features. The probability of false signal
detection 𝑓 , decreases progressively with each processi-
ng step, particularly after color model adjustment and
skeletonization, indicating a significant reduction in
noise-related artifacts that could otherwise be misi-
dentified as features. Together, these results affirm that
each stage of image processing incrementally improves
the distinctness of the venous pattern and minimizes
the likelihood of noise-induced errors, thus enhanci-
ng the overall accuracy and reliability of the image
analysis.

The structure of the neural network was undertaken
using the Python programming language as well as
for the imaging processing and shown on Figure 9,
where we utilized the TensorFlow Keras library –
an open-source machine learning software framework.
This framework provides a comprehensive suite of tools
and functionalities for the development, training, and
evaluation of neural networks, ensuring a robust and
efficient implementation of given model.

Input
(600x600x3)

Conv2D (32
filters, 3x3)

+ ReLU

MaxPooling
2D (2x2)

Input layer Convolutional
layer

Pooling layer

Dense
(64 neurons)
+ ReLU +

Dropout(0.5)

Dense
(3 neurons)
+ Softmax

Output layer Fully connected
layer

Flatten

Flatten layer

Fig. 9. Structure of developed CNN

Finally, the performance of the neural network
was evaluated by evaluating accuracy (Fig. 10a) and
training losses (Fig. 10b). As can be seen from the
graphs, after the fifth training epoch, the accuracy
and loss stop changing, this is due to the fact that
the shading dataset is quite small and the network has
reached its peak accuracy and loss. But in general, the
graphs show a significant increase in accuracy, in parti-
cular, the constructed convolutional neural network is
characterized by a recognition accuracy of 83.3%.

         

(a) (b)

Fig. 10. Plot of accuracy with each training epoch (a)
and schedule of losses during training (b)

4 Disscusion

This article presents a number of modifications ai-
med at turning it into a robot assistant for medical
institutions. The prototype of the palm vein pattern
scanner demonstrates its performance in laboratory
conditions, but there are ways to develop it, including:

- changing the design of the scanner, which
includes changing the location of the IR LEDs to
increase the contrast of veins against the palm
and compensate for the effects of palms with
different thicknesses [17];

- installing a polarising filter between the camera
and the LEDs, this will increase the colour
saturation and reduce the amount of reflected
radiation (increasing the colour saturation of the
scene and suppressing unwanted reflections) [14];

- increasing the size of the dataset for training the
neural network, which will make it possible to
identify the patient with greater accuracy [18,19].

Conclusions

The scope of this study has revealed the potential
for the adaptation and enhancement of a cost-effective
medical robot-assistant, poised for both military and
civilian applications. The core innovation underpinning
this progress revolves around replacing the Raspberry
Pi 3b microcomputer with its more advanced
counterpart, the Raspberry Pi 4b. This transition
has ushered in significant advancements, particularly
in computational efficiency. One of the most notable
improvements from this microcomputer upgrade is the
remarkable acceleration in the robot’s computational
capabilities. By harnessing the enhanced processing
power of the Raspberry Pi 4b, obtained device can
perform calculations with noteworthy celerity, contri-
buting to quicker decision-making and more responsive
interactions.

A biometric patient identification system based
on the palm venous pattern was implemented, which
includes a Raspberry Pi and an infrared camera on
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the hardware side and a convolutional neural network
on the software side. Using standard image process-
ing techniques combined with a convolutional neural
network allowed us to obtain patient identification
accuracy (83.3%), which is satisfactory for datasets
with a small training sample. Another feature of the
system is its modularity, which increases the system’s
maintainability, as in the event of a malfunction or
need for replacement, the Raspberry Pi can be easily
dismantled and replaced with a new device without
the need to reconfigure other system components. This
flexibility in the use and maintenance of the system
allows for efficient maintenance.

In addition to the above, another advantage of using
the TurtleBot Waffle Pi mobile platform is its modular
structure. This feature allows easy installation of new
modifications and their removal in case of breakdown.

Together, these innovations represent a signi-
ficant improvement over the previously developed
autonomous system. The results of this work have the
potential not only to provide assistance in the field
of medical care, but can also be implemented in the
military field as an effective assistant robot technology
for monitoring the condition of wounded soldiers.
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Перспектива створення бюджетного
робота-асистента для медичних закла-
дiв на базi платформи Waffle PI4 зi
сканером венозного рисунка долонi

Ануфрiєв В. В., Левченко О. О., Левченко Є. В.,

Чекубашева В. А., Глухов О. В., Галат О. Б.

Розроблено комплекс модифiкацiй для роботизова-
ної платформи TurtleBot 3 Waffle Pi. Одним iз ключових
досягнень даної роботи є створення системи бiометри-
чної iдентифiкацiї на основi венозного рисунка долонi.
Робота системи iдентифiкацiї заснована на використан-
нi iнфрачервоного випромiнювання, що поглинається
гемоглобiном венозної системи долонi. Поглинуте ви-
промiнювання створює чiткий вiзерунок, який можна
зафiксувати за допомогою камери без iнфрачервоного

фiльтра. Отримане зображення попередньо обробляє-
ться для зменшення шуму та унiфiкацiї з iншими зобра-
женнями для подальшого їх використання у тренуваннi
згорткової нейронної мережi, що використовується для
iдентифiкацiї пацiєнта. Даний метод iдентифiкацiї до-
зволяє з високою швидкiстю i точнiстю iдентифiкувати
пацiєнта, навiть при наявностi бруду або подряпин на
долонi. Описанi модифiкацiї спрямованi на розширення
можливостей платформи для вiйськово-медичного за-
стосування. Iнтегруючи цi модифiкацiї в роботизовану
платформу TurtleBot 3 Waffle Pi, вiйськовi та цивiльнi
госпiталi можуть покращити свої можливостi з надан-
ня своєчасної та точної медичної допомоги тим, хто її
потребує.

Ключовi слова: робот; TurtleBot; Raspberry Pi; бiоме-
тричний сканер; скелетонiзацiя зображення; згорткова
нейронна мережа
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