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Diabetic retinopathy (DR) represents one of the most serious complications associated with diabetes mellitus,
posing a significant threat to vision and leading to severe impairment and potential blindness if not diagnosed
and treated promptly. The study investigates the integration of advanced edge detection techniques with
machine learning algorithms to enhance the precision and effectiveness of DR diagnosis. By leveraging the
APTOS 2019 Blindness Detection dataset, the research employs a combination of edge detection methods
such as the Sobel operator and the Canny edge detector, alongside advanced preprocessing techniques and
sophisticated feature extraction methods. The study reveals that the synergy between these edge detection
techniques and machine learning significantly boosts the diagnostic accuracy of neural networks. Specifically,
the accuracy for multiclass classification (spanning five categories: No diabetic retinopathy, Mild, Moderate,
Severe, and Proliferative diabetic retinopathy) improved from 78.5% to an impressive 88.2%. This marked
enhancement underscores the potential of these techniques in refining the diagnostic processes for early DR
detection. By improving the accuracy of classification, this approach not only facilitates early intervention but
also plays a crucial role in reducing the risk of severe vision loss among patients with diabetes. The findings
of this study emphasize the importance of integrating advanced image processing techniques with machine
learning frameworks in medical diagnostics. The improved outcomes demonstrated in this research highlight
the potential for such technological advancements to contribute meaningfully to the field of ophthalmology,
leading to better patient care and potentially transforming the standard of practice in DR diagnosis.
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Introduction

Diabetic retinopathy (DR) is a microvascular
complication of diabetes mellitus that affects reti-
nal blood vessels, leading to vision impairment and
potentially blindness if left untreated. It is one of
the leading causes of vision loss globally, parti-
cularly among working-age adults. The pathogenesis
of DR involves prolonged hyperglycemia, which causes
damage to the retinal microvasculature, leading to
increased vascular permeability, capillary occlusion,
and subsequent retinal ischemia and neovascularizati-
on. DR is typically classified into two main stages:
non-proliferative diabetic retinopathy (NPDR), which
is characterized by microaneurysms, hemorrhages,
and exudates, and proliferative diabetic retinopathy
(PDR), which involves neovascularization and can
lead to more severe complications such as vitreous
hemorrhage and retinal detachment.

The pathophysiological mechanisms underlying DR,
begin with chronic hyperglycemia-induced metabolic

changes that lead to endothelial dysfunction and the
breakdown of the blood-retinal barrier. This results
in fluid leakage and the formation of retinal edema,
particularly in the macular region, known as diabetic
macular edema (DME). As the disease progresses,
capillary occlusion and ischemia occur, triggering the
release of vascular endothelial growth factor (VEGF)
and the development of neovascularization in PDR [1].
These abnormal new vessels are fragile and prone to
bleeding, which can cause sudden vision loss. Additi-
onally, fibrovascular proliferation can lead to tractional
retinal detachment, further exacerbating vision impair-
ment.

Early detection and continuous monitoring of DR
are crucial for preventing severe visual impairment.
Regular retinal examinations can identify early signs of
DR, allowing for timely intervention and management.
Studies have shown that with early detection and
appropriate treatment, the progression of DR can
be significantly slowed, reducing the risk of vision-
threatening complications. Treatment options for DR
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include laser photocoagulation, intravitreal injections
of anti-VEGF agents, and corticosteroids, all of which
aim to control disease progression and preserve vision
[2]. Moreover, effective management of systemic risk
factors such as blood glucose, blood pressure, and lipid
levels is essential in mitigating the progression of DR
[3]. Implementing automated retinal vessel segmentati-
on algorithms can enhance the efficiency and accuracy
of DR screening programs, facilitating early diagnosis
and improving patient outcomes.

Significant progress has been made in utilizing
advanced image processing techniques and machine
learning algorithms for the detection and diagnosis of
diabetic retinopathy. Early studies focused on tradi-
tional image processing methods such as the Sobel
and Prewitt operators for edge detection, which hi-
ghlighted critical retinal features like blood vessels,
microaneurysms, and hemorrhages [1]. These methods,
while effective, had limitations in sensitivity and
accuracy, especially when dealing with large datasets
and subtle retinal abnormalities. Recent advancements
have seen the integration of more sophisticated techni-
ques, such as the Canny edge detector, which offers
improved precision and robustness in delineating
retinal structures. Additionally, the use of wavelet
transforms and multi-scale edge detection methods has
enhanced the capability to capture both fine and coarse
details in retinal images, further aiding in the early
detection of DR.

In parallel, the application of machine learning
and deep learning algorithms has revolutionized DR
diagnosis. Convolutional neural networks (CNNs), in
particular, have demonstrated high accuracy in classi-
fying retinal images and detecting various stages of
DR. Studies leveraging pre-trained models like ResNet
and VGG have shown significant improvements in
diagnostic performance when fine-tuned on retinal
image datasets. Moreover, the integration of attenti-
on mechanisms in deep learning models has allowed
for better focus on the most relevant regions of
the retinal image, enhancing the detection of critical
features indicative of DR [2]. Combining these machi-
ne learning techniques with advanced edge detection
has resulted in systems capable of automated, high-
precision analysis, making early DR detection more
accessible and reliable. This synergy between image
processing and machine learning holds great promi-
se for improving patient outcomes by enabling earlier
intervention and more effective management of DR.

The aim of this study is to explore the appli-
cation of advanced edge detection techniques combi-
ned with machine learning algorithms to improve the
accuracy and efficiency of DR diagnosis. The study
utilizes various edge detection methods, including the
Sobel operator and Canny edge detector, integrated
with preprocessing techniques and feature extraction
methods to enhance diagnostic performance.

1 Diabetic Retinopathy and the
Role of Retinal Edge Detectors

The current standard for diagnosing diabetic reti-
nopathy involves a comprehensive dilated eye exam
conducted by an ophthalmologist. During this exam,
the doctor examines the retina for abnormalities, such
as swelling, blood vessel leaks, and deposits of fatty
material. Additional diagnostic tools include fundus
photography, which provides detailed images of the
retina, and Optical Coherence Tomography (OCT),
which captures cross-sectional images of the retina to
detect fluid accumulation and thickness changes [4].
Fluorescein angiography, where a dye is injected into
the bloodstream to highlight blood vessels in the reti-
na, is another technique used. While effective, these
methods have limitations, including the need for highly
trained specialists, the invasiveness of some procedures,
and the time-consuming nature of the tests [5].

With the global rise in diabetes cases, there is a
pressing need for more efficient and accurate diagnostic
techniques for DR. Traditional methods, although
effective, are not always accessible to all patients due to
the requirement of specialized equipment and experti-
se. Furthermore, early-stage DR often goes undetected
until significant damage has occurred, highlighting
the necessity for advanced diagnostic tools that can
identify the disease in its early stages [6]. Emerging
technologies, such as artificial intelligence (AI) and
deep learning algorithms, offer promising solutions by
enabling automated, high-precision analysis of reti-
nal images. These technologies can enhance screening
programs, making early detection more accessible and
affordable, ultimately preventing vision loss in diabetic
patients.

Retinal edge detection algorithms play a crucial
role in image processing, particularly in the analysis
of retinal images for diagnosing DR. These algorithms
are designed to identify and highlight the boundaries
and edges within an image, which correspond to the
structures and features of the retina. Techniques such
as the Sobel operator, Prewitt operator, and Canny
edge detection are commonly used [7]. The Sobel and
Prewitt operators calculate the gradient of the image
intensity at each pixel, emphasizing regions with high
spatial frequency that correspond to edges. The Canny
edge detection algorithm, often considered the gold
standard, involves a multi-stage process that includes
noise reduction, gradient calculation, non-maximum
suppression, and edge tracking by hysteresis, resulting
in a precise delineation of retinal structures [7].

Utilizing edge detection in DR diagnosis offers
several advantages. Primarily, it enhances the visibi-
lity of critical retinal features, such as blood vessels,
microaneurysms, and hemorrhages, which are essenti-
al for identifying and staging DR. By highlighting
these features, edge detection algorithms facilitate
more accurate and efficient analysis by clinicians and
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automated systems. Additionally, these algorithms can
process large volumes of retinal images rapidly, mak-
ing them suitable for screening programs where timely
diagnosis is crucial. Edge detection also provides a
standardized method of image analysis, reducing vari-
ability in diagnoses and improving the overall reliabi-
lity of DR detection [8].

One of the most significant potentials of reti-
nal edge detectors is their ability to detect subtle
changes in retinal structure that might indicate the
early stages of DR. Early detection of microaneurysms
and slight vessel abnormalities can be challenging
with traditional methods, but edge detection algo-
rithms can enhance these tiniest details, making them
more apparent. This capability is crucial because
early intervention can prevent the progression of DR
to more severe stages, ultimately preserving visi-
on. Furthermore, by integrating edge detection with
advanced machine learning algorithms, it is possible to
develop systems that continuously learn and improve,
increasing their sensitivity and specificity in detecting
early DR changes [9].

The future of retinal edge detection for DR di-
agnosis lies in the integration of advanced computati-
onal techniques, such as deep learning and artifici-
al intelligence. These technologies can significantly
enhance the capabilities of edge detection algorithms,
allowing for more precise and automated analysis.
By training deep learning models on vast datasets
of retinal images, these systems can learn to identify
complex patterns and features indicative of DR with
high accuracy. Additionally, innovations in hardware,
such as more powerful GPUs and specialized Al chips,
enable faster and more efficient processing of reti-
nal images. Combining these advancements with edge
detection techniques promises a future where DR, di-
agnosis is not only more accurate and efficient but
also more accessible to patients worldwide, regardless
of their geographic location [10].

2 Types of Retinal Edge Detecti-
on Techniques

Retinal edge detection techniques encompass a vari-
ety of algorithms, each designed to identify boundaries
within an image, crucial for highlighting features in
retinal images. The Canny edge detector is one of
the most popular methods due to its precision and
robustness. It involves multiple stages, including noise
reduction, non-maximum suppression, edge tracking by
hysteresis, and gradient magnitude calculation (used in
Sobel and Canny edge operators):

Glr,y) = \[Galw,9)? + Gy(wp)?, (1)

where G;(z,y) and Gy (z,y) are the gradients in the z
and y directions, respectively.

The Sobel operator, on the other hand, computes
the gradient magnitude of the image using convolution
with Sobel kernels, effectively highlighting regions of
high spatial gradient. Additionally, the Laplacian of
Gaussian (LoG) combines Gaussian smoothing with
the Laplacian operator to detect edges in areas with
rapid intensity change:

1
LoG(x,y) = g [1 552
where o is the standard deviation of the Gaussian
distribution and z and y are the coordinates of the
point in the image.

Each algorithm has its unique approach to detect-
ing edges, making them suitable for different aspects
of retinal image analysis [11].

When applied to the diagnosis of diabetic reti-
nopathy, each edge detection algorithm has distinct
strengths and weaknesses. The Canny edge detector
is praised for its high accuracy and ability to detect
a wide range of edges, making it particularly useful
for detailed retinal images. However, its computational
complexity can be a drawback for large datasets or
real-time applications.

The Sobel operator, while simpler and faster, may
produce less precise edges and be more susceptible
to noise, potentially missing subtle features in retinal
images. The Prewitt operator shares similar strengths
and weaknesses with the Sobel operator but is slightly
less sensitive to noise. The LoG method provides good
edge localization but can be computationally intensive
and sensitive to the choice of Gaussian kernel size.
These differences highlight the importance of selecting
the appropriate edge detection algorithm based on the
specific requirements of DR diagnosis [8].

The suitability of each edge detection technique can
vary depending on the stage of DR being analyzed.
In the early stages of DR, where microaneurysms and
small vessel abnormalities are prevalent, the Canny
edge detector’s high precision and sensitivity make it
an excellent choice for detecting these subtle features.
For moderate to severe nonproliferative retinopathy,
where larger hemorrhages and exudates become more
apparent, the Sobel or Prewitt operators may suffice
due to their efficiency and ability to highlight larger,
more obvious edges. In the advanced stages, such as
proliferative diabetic retinopathy, the LoG method can
be advantageous for capturing the complex network
of neovascularization and other significant structural
changes, despite its higher computational demands
[12].

As the field of medical imaging continues to evolve,
combining traditional edge detection techniques with
advanced machine learning and artificial intelligence
methods holds great promise. Future developments
may focus on hybrid approaches that leverage the
strengths of multiple algorithms, enhancing their abili-
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ty to detect a wide range of retinal abnormalities across
all stages of DR.

For instance, integrating the Canny edge detector’s
precision with the computational efficiency of the
Sobel operator could yield a balanced solution suitable
for various clinical settings. Additionally, Al-powered
systems that learn from vast datasets of retinal images
can further refine these techniques, improving their
accuracy and reducing the need for manual interventi-
on. Such innovations will likely play a crucial role in
the early detection and management of DR, ultimately
improving patient outcomes [13].

3 Materials and Methods

In this research, an open-access dataset APTOS
2019 Blindness Detection was used for diabetic reti-
nopathy detection [14]. Hosted on Kaggle, it is a pivotal
resource in medical imaging for diabetic retinopathy
detection.

Comprising 3,662 high-resolution retinal images,
each labeled with one of five severity levels of di-
abetic retinopathy (no DR, mild DR (microaneurysms
only), moderate DR (intraretinal hemorrhages, venous
beading, cotton-wool spots), severe DR (numerous
intraretinal hemorrhages, venous beading), and
PDR (neovascularization, vitreous or pre-retinal
hemorrhages)), this dataset facilitates the development
and evaluation of sophisticated diagnostic models.
These images, captured via fundus photography,
provide a robust foundation for applying and testing
various image processing algorithms, particularly those
focused on edge detection. The APTOS 2019 dataset,
with its detailed and diverse images (Fig. 1), serves
as an excellent testbed for evaluating the efficacy of
these edge detection techniques, particularly in their
ability to detect subtle structural changes indicative of
early-stage diabetic retinopathy.

Fig. 1. Example of images from the APTOS 2019
dataset

The total number of images in each class is as
follows: class 0 (no DR) has 1,805 images, class 1

(mild DR) — 370 images, class 2 (moderate DR) — 999
images, class 3 (severe DR) — 193 images, and class 4
(Proliferative DR) - 295 images.

4 Enhanced Retinal Edge
Detection System for Diabetic
Retinopathy

To improve the quality of retinal images for
edge detection, we implemented several advanced
preprocessing techniques. Noise reduction was achieved
using the Non-Local Means (NLM) algorithm for image
denoising and median filtering, effectively removing
noise while preserving critical details in the retinal
images.

We applied Contrast Limited Adaptive Histogram
Equalization (CLAHE) to improve the visibility of
retinal structures, making subtle abnormalities more
detectable. CLAHE enhances local image contrast by
applying histogram equalization to small image tiles
and limiting noise amplification through histogram cli-
pping. This technique improves the visibility of details
in images with varying lighting conditions or poor
contrast, making it especially useful in medical imag-
ing and other fields where detail clarity is crucial.
Normalization of image intensity values ensured uni-
formity across different images, reducing variability
and enhancing consistency in edge detection (Fig. 2).
Additionally, we incorporated image standardization
techniques to align retinal images taken at different
times or angles to facilitate better comparison and
detection of changes over time.

Original Image

NLM Denoised Image

1000 1500 2000 2500 3000 1000 1500 2000 2500 3000

CLAHE Enhanced Image Normalized Image

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Fig. 2. Example of original images with images after
applying the following techniques: NLM denoising,
CLAHE image enhancing, and normalization

To enhance the precision and accuracy of edge
detection, we employed a hybrid approach combining
multiple edge detection algorithms. As proposed in
this research, the Sobel operator was used for primary
edge detection (Fig. 3), followed by the Canny edge
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detector for fine-tuning, leveraging the strengths of
both methods.

Sobel + Canny Edge Detection

Fig. 3. Sobel and Canny Edge detectors combination

A multi-scale edge detection approach was
implemented to capture edges at different resoluti-
ons, enhancing the detection of both fine and coarse
features. Furthermore, we integrated wavelet transform
(Daubechies wavelets), providing a multi-resolution
analysis of the retinal images and capturing more deta-
ils across various scales up to the third level, analyzing
approximations, horizontal details, vertical details, and
diagonal details (Fig. 4).

Feature Classification

Preprocessing

l l

1. Sobel Operator

2. Canny Edge Detector

3. Prewitt Operator

4. Multi-Scale Edge
Detection

Edge detection

1. Noise Reduction (NLM,
Median Filtering)

2. CLAHE

3. Normalization

W

Extraction

l l

No DR, Mild, Moderate,
Severe, Proliferative

1. Geometric Features

2. Wavelet Transform
Derived Features

3. Box-Counting Method

Fig. 4. The block diagram of the proposed diabetic retinopathy detection algorithm

The two-dimensional discrete wavelet transform
(DWT) used for an image I(x,y) is given by:

WylI(a,b,c) =

- e (52w
3)

where:

o Wyl(a,b,c) is the wavelet coefficient at scale q,
and positions b and c;

e I(z,y) is the original image;
e (x,y) is the two-dimensional mother wavelet.

We analyzed the image at different resolutions by
applying the DWT at multiple scales, up to the third
level included. Based on the obtained wavelet coeffici-
ents, 6 features were formed, which included statistical
parameters (average, variance, energy, entropy) of each
of the components at different levels of the decomposi-
tion. These features were fed to the input of the
neural network and other machine learning methods
for further training and classification. This multi-
resolution analysis was beneficial for edge detection,
as it allowed us to identify both fine details and

larger structures within the image. The use of wavelet
decomposition helped to improve the selection of edges
due to multi-level image analysis, which allowed us
to highlight both general shapes and small details of
structures. Specifically, we decomposed the images into
components containing different frequency informati-
on, allowing us to focus on critical details that are
markers of DR. We extracted relevant features from
the detected edges for accurate diagnosis using a
combination of methods. Geometric features, includ-
ing shape, size, and orientation of detected edges,
were analyzed to identify specific retinal abnormali-
ties. Feature vectors were constructed by combin-
ing all calculated features for each component at all
decomposition levels. Each vector contained 72 features
(3 levels, 4 types of components, and 6 statistical
features). Thus, the input to the neural network was
not the raw images but feature vectors of dimension
72, containing key information about the textural and
edge characteristics of the retinal images.

Texture analysis techniques such as the Gray-Level
Co-occurrence Matrix (GLCM) were applied to capture
textural patterns indicative of DR and extract 60
features. Constructing the GLCM involves counting
how often a pixel with gray level ii is adjacent to a
pixel with gray level jj at the specified displacement
for each pixel in the image. This results in a matrix
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where each entry (i,7)(i,j) represents the frequency
of the pixel pair. The matrix is then often normalized
by dividing each entry by the total number of pixel
pairs, converting it into a probability distribution. This
normalized GLCM can then be analyzed to extract
various texture features such as contrast, correlation,
energy, and homogeneity [13].

The GLCM captures the spatial relationship of pi-
xel intensities, which can be used to infer the direction
and shape of edges in image structures. By construct-
ing GLCMs for different directions (e.g., horizontal,
vertical, and diagonal), the texture features can reveal
dominant directions. For instance, a high contrast value
in the vertical direction implies that vertical edges
are prominent. The extracted features provide insights
into texture: high contrast indicates sharp edges, high
energy suggests uniform textures, and the correlation
feature helps identify repetitive patterns, inferring the
regularity of edge shapes [14].

In practical applications such as analyzing retinal
images for DR, the GLCM is used to compute texture
features in multiple directions. For example, if the
horizontal and vertical GLCMs show high contrast and
low correlation, it indicates the presence of sharp, dis-
tinct edges with little repetitive texture, corresponding
to abnormal blood vessels or exudates in the retina.
By leveraging the GLCM, detailed textural patterns,
including edge direction and shape, can be quanti-
tatively analyzed, aiding in the diagnostic process of
medical images [14].

Morphological operations, including dilation and
erosion, were used to refine the detected edges and
highlight significant retinal structures (Fig. 5).

Morphologically Processed Image
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Fig. 5. Morphologically processed retinal image

Additionally, in our study, fractal analysis was
performed to evaluate complex structural patterns in
retinal images quantitatively. This analysis helped in
identifying changes associated with different stages of
DR. Fractal analysis was used to assess the geometric
complexity and irregularity of structures in retinal
images. Detecting fractal features allows for a more
precise description of patterns characteristic of each
DR stage, thereby enhancing the overall diagnostic
effectiveness. Integrating fractal features into the input

data set significantly improved the accuracy of DR
stage classification.

Fractal dimension, as an additional feature, helped
the neural network better distinguish the complex and
irregular patterns characteristic of different disease
stages. This increased the overall sensitivity and speci-
ficity of the model, making it more reliable for practical
use in medical diagnostics.

To perform fractal analysis, the retinal images were
first pre-processed to enhance the vascular structures.
This involved applying techniques such as Gaussian
smoothing and adaptive thresholding to isolate the
blood vessels from the background. Once the vessels
were highlighted, a fractal dimension calculation was
carried out. The fractal dimension (D) is a measure of
how completely a fractal appears to fill space as you
zoom in; it quantifies the complexity and density of
the vascular network [15].

The box-counting method was employed to
determine the fractal dimension. This method involves
overlaying a grid of boxes of varying sizes over the
binary image of the retinal vasculature and counting
the number of boxes that contain part of the vessel
structure. A higher fractal dimension indicates a more
complex and denser vascular network, which correlates
with the severity of DR. Changes in the fractal dimensi-
on over time can reflect disease progression or response
to treatment.

Fractal analysis, combined with other texture
and edge detection methods such as GLCM and
wavelet transforms, provided a comprehensive dataset
for subsequent analysis. By integrating these diverse
feature extraction techniques, we ensured a robust
characterization of retinal structures, facilitating the
accurate detection and grading of DR [16].

To enhance diagnostic accuracy and automate
analysis, we integrated advanced machine learning
techniques. CNNs were employed to learn complex
patterns from the detected edges and classify the
stages of DR. Pre-trained models such as ResNet
and VGG were fine-tuned on retinal datasets to
improve performance. Feature fusion combines edge-
based features with deep learning features, creating a
comprehensive feature set for classification. Unsupervi-
sed learning techniques for anomaly detection were
implemented to identify novel patterns that may indi-
cate early DR. Incorporating attention mechanisms
in the deep learning models allowed the algorithm
to focus on the most relevant regions of the reti-
nal image, further improving accuracy. These regions
include the macula, optic disc, and regions exhibiting
signs of diabetic retinopathy such as microaneurysms,
hemorrhages, and exudates.

To enhance the output of the edge detection and
classification system, several post-processing techni-
ques were implemented. Active contours and level set
methods were applied to refine the detected edges,
improving their accuracy. We focused on specific regi-
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ons of interest within the retina, such as the macula
and optic disc, to reduce false positives and increase di-
agnostic relevance. These post-processing refinements
ensured that the final output was both precise and
clinically relevant.

To ensure the reliability and accuracy of the
improved edge detection methods combination, a
thorough validation and testing process was conducted.
Performance metrics such as accuracy, sensitivity,
specificity, precision, and F1l-score were used for
comprehensive evaluation.

In our study, we compared the performance
of four different machine learning (ML) algo-
rithms—Support Vector Machines (SVM), Random
Forest (RF), Gradient Boosting (GB), and K-Nearest
Neighbors (KNN) alongside a neural network (NN).
We implemented these models both with and wi-
thout various enhancements. Enhancements included
preprocessing techniques such as NLM and medi-
an filtering for noise reduction, CLAHE for contrast
enhancement, and image normalization.

Additionally, we used hybrid edge detection algo-
rithms, multi-scale edge detection, wavelet transforms,

and sophisticated feature extraction methods like
GLCM and fractal analysis for feature extraction. For
the neural network, we integrated attention mecha-
nisms (soft and hard) to allow the model to focus on
specific parts of the input data and utilized pre-trained
models such as ResNet and VGG for DR classification.

5 Results

Table 1 summarizes the performance metrics
(Accuracy — the proportion of correctly classified
instances out of the total number of instances and F1-
score — a measure of a model’s accuracy that considers
both precision and recall) of each algorithm for DR
classification into 5 classes (No DR, Mild, Moderate,
Severe, Proliferative) with and without edge-detection
enhancements on the APTOS 2019 Blindness Detecti-
on dataset. The total number of images for the training
set is 2,929 images, while the test set comprises 733
images with feature vectors formed from wavelet coeffi-
cients of retinal images as inputs.

Table 1 PERFORMANCE METRICS OF EACH ALGORITHM WITH AND WITHOUT EDGE-DETECTION

ENHANCEMENTS
Algorithm | Pre-process | Accuracy | F1 | No DR | Mild | Moderate | Severe | Proliferative
SVM N 75.2% 0.75 82% 70% 65% 78% 60%
SVM Y 82.5% 0.83 88% 80% 75% 85% 84%
RF N 77.8% 0.78 85% 2% 68% 80% 63%
RF Y 85.1% 0.85 90% 82% 78% 87% 85%
GB N 76.5% 0.76 83% 71% 66% 79% 62%
GB Y 83.8% 0.84 89% 81% 7% 86% 83%
KNN N 74.1% 0.74 81% 68% 64% 76% 59%
KNN Y 81.6% 0.82 87% 79% 74% 84% 80%
ResNet N 78.5% 0.78 86% 73% 69% 81% 65%
ResNet Y 88.2% 0.88 92% 85% 81% 89% 87%
Comparing the results, it is evident that the © Conclusion
enhancements significantly improved the performance
across all models. The neural network showed the The results demonstrate that incorporating
most considerable improvement, with its accuracy ri- advanced preprocessing, hybrid edge detection,

sing from 78.5% without enhancements to 88.2% with
enhancements. Similarly, other performance metrics li-
ke precision, recall, and F1-score also showed noticeable
improvements. For instance, the SVM’s accuracy
improved from 75.2% to 82.5%, and Random Forest’s
accuracy increased from 77.8% to 85.1%.

The enhancements notably improved the class-
specific accuracies, particularly for the higher severi-
ty classes (Severe and Proliferative). For example,
the neural network’s accuracy for Proliferative DR
improved from 65% without enhancements to 87%
with enhancements, indicating a significant boost in
detecting the most severe cases of diabetic retinopathy.

and sophisticated feature extraction methods can
substantially enhance the performance of machine
learning models in detecting diabetic retinopathy.
Specifically, edge detection techniques played a crucial
role in achieving higher accuracy and better diagnostic
performance across all models. The integration of
hybrid edge detection algorithms, such as combining
the Sobel operator with the Canny edge detector,
allows for precise delineation of retinal structures,
enhancing the visibility of critical features like blood
vessels, microaneurysms, and hemorrhages.

The use of multi-scale edge detection and wavelet
transforms further contributed to capturing both fine
and coarse details in the retinal images, which are
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essential for the accurate classification of the different
stages of diabetic retinopathy. These techniques signifi-
cantly improved the neural network’s ability to identify
subtle and complex patterns, leading to an accuracy
increase from 78.5% to 88.2% when enhancements were
applied. Similarly, the performance improvements in
other models underscore the importance of advanced
edge detection in medical image analysis.

Edge detection techniques not only enhanced the
overall model accuracy but also improved -class-
specific accuracies, particularly for the higher severity
classes. For example, the neural network’s accuracy
for detecting the most severe cases (proliferative DR)
improved from 65% without enhancements to 87% with
enhancements. This significant boost demonstrates the
effectiveness of edge detection in highlighting critical
retinal features that are indicative of advanced diabetic
retinopathy.

In conclusion, the integration of advanced edge
detection techniques is paramount for improving
the diagnostic accuracy of machine learning models
in detecting diabetic retinopathy. These techniques
enhance the visibility and extraction of vital retinal
features, facilitating more precise and reliable analysis.
The improved detection capabilities enabled by these
methods can lead to earlier intervention and better
management of diabetic retinopathy, ultimately contri-
buting to improved patient outcomes and reducing the
risk of vision loss.
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Po3minpeni MmeTonu BUABJAEHHS KOHTYPIB
OJIs IMOKPAIeHol aiarHocTUKM Aiaberu-
9HOI permHOnaTii 3 BUKOPUCTAHHAM Ma-
MINHHOTO HABYAHHSLA

Bacapab M. P., Iseanvro K. O.

Hiabermana permuonaria (IP) € omamm i3 maiicepiio-
3HINIUX YCKJIAHEHDb, MOB’S3aHUX 13 IyYKPOBUM IiabeToM,
[0 CTAHOBUTH 3HAYHY 3arpo3y MJisi 30pY Ta IPU3BOIUTH
0 CEepUO3HUX IMOPYUIEHb 1 MOTEHIIHOI C/IIOTH, AKIIO He
[iarHOCTYBATHU T He JIKYBAaTU BIACHO. Jloctim2KeHHsT BUCBI-
TUIIO€ IHTErPaIiio IepeJoBUX METOIIB BUSABJICHHS KOHTYDIB
3 aArOpUTMAMHU MAINTWHHOTO HABYAHHS /I TIiBUIIEHHS
To4yHocTi Ta edekruBHocTi miarmocruku /IP. Bukopucro-
Byoun Habip marmx APTOS 2019 Blindness Detection, y
JOCTII/IZKEHHI BUKOPHUCTOBYETHCS KOMOIHAIsI METO/iB BU-
sBJIEHHs KOHTYDIB, Takux #K omeparop Sobel i merexrop
xoutypis Canny, a TakoX BIOCKOHAJIEHI METOIN IIOIepe-
JTHBOI OOPOOKYM Ta KOMILTEKCHI METOIW BUIYIEHHS O3HAK.
Hocmimkennas: moka3ye, mo edeKTUBHICTh X METOIB BU-
ABJIEHHA KOHTYPIB i MaIIMHHOrO HABYAHHSA 3HAYHO IIiIBU-
1Iy€ JarHOCTUYHY TOYHICTH HEHPOHHUX Mepexk. 30KpeMma,
rouHicTh GaraToknacoBoi kinacudikamil (1o 0xXomwoe n’aTh
KaTeropiii: BiACYTHICTH AiabeTHYHOI peTHHOIATII, JIerka,
noMmipHa, Ba)kKKa Ta ImpoJsideparuBHa mgiabeTUYHA pPETH-
vonarig) noxpammnaca 3 78,5% mo 88,2%. Ile momitme
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Po3uminpeni meroan BUABJICHHS KOHTYPIB f1s mOKpalieHol giarnocTuku aiaberuvrol peruHOnaril 3 BUKOPUCTAHHAM MAIIHH... 7D

MMOKPAIIEHHS i IKPECJIIOE TIOTEHITA INX METOIB Y BIOCKO-
HaJIEHH] TIaTHOCTUYIHNUX TTPOIECIB /I PAHHBOTO BUSABJICHHS
AP. Iligsumyroun TouHicTh Kaacudikaril, meil maxis xe
TITbKY COPHUSE PAHHBOMY BTPYYAHHIO, aJjie ¥ Bimirpae BBa-
JKJIMBY POJIb Y 3HUKEHHI PU3UKY ILIKOBUTOI BTPATH 30Dy
cepes mari€eHTiB 3 miabetom. Pe3ynbrary 11b0TO TOCTIIKE-
HHs ITKPEC/IIOI0Th BayK/IUBICTh IHTErpariii mepeioBux Me-
TOiB 06POOKY 300pakeHb i3 CTPYKTypPaMI MAITMHHOTO Ha-
BYaHHA B MeawdHiil miarmoctumi. Ilokpameni pesymbrarw,

IPOIEMOHCTPOBAHI B IHOMY JOCJILIZKEHHI, IiIKPeCI0Th
TOTEHIaJ TaKUX TEXHOJIOTIYHUX MAOCATHEHBb I 3HATHO-
TO BHECKY B 0] TabMOJIOTIIO, IO TPU3BEAE 0 KPAIIOro
[OTJIAAy 33 MAIlEHTAMU Ta MOTEHIHNHHO 3MIHUTH CTAHIAPT
mpakTuku giarmoctukn JIP.

Karowo6t caosa: niabeTwdHa PETUHONATIS; BUSBIICHHS
KOHTYpiB; MamuHHe HaB4anHs; omneparop Cobess; mere-
krop xkourypis Kauni; APTOS 2019; meiiponni mepexi; me-
JWYHA Bi3yaJii3allid; paHHS MIarHOCTUKA; MOPYIIEHHS 30PY
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