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This paper presents further developments in mathematical modeling of the electrical impedance of a
piezoceramic disk in a wide frequency range, specifically focusing on the mid-frequency range, i.e., when
the elastic wavelength becomes commensurate with the radius of the piezoceramic disk, which is important
for numerous modern applications. A mathematical model was developed for disk piezoelectric transducers
made of piezoceramics to estimate their electrical impedance and quasi-static electrical capacity in the
medium frequency range basing on their geometrical, physical, and mechanical characteristics. The research
has found that a piezoceramic disc attains electromechanical anti-resonance in the medium frequency range
at frequency, at which its electrical impedance follows to infinity. This effect is due to the polarization
charges being completely compensated by the electric charge, when the electric current vanishes and energy
consumption from the generator is absent. The calculations proved that at frequencies close to the first thick-
ness resonance (corresponding to the dimensionless wave number from 40 to 60), the radial displacements of
material particles of the disk vanish. A very rapid decrease in the levels of radial shifts with a simultaneous
increase in the electromechanical resonance number was noted. The evaluation of the mechanical quality
factor of piezoceramic disk elements, obtained with the developed mathematical model, closely correlates

with real values, which is confirmed by the high agreement between theoretical and experimental results.
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Introduction

Piezoceramic elements find multiple applications
in modern technology due to their unique properti-
es of high-precision conversion of mechanical energy
into electrical energy and vice versa [1]. In particular,
disk-shaped elements in the medium frequency range
are extremely relevant in various fields, such as radio
engineering, ultrasonic diagnostic systems, sensors and
actuators [2, 3], as well as in communication and navi-
gation technologies. Hence, piezoceramic disks are used
in ultrasonic transducers for medical diagnostics, where
operation accuracy and stability in medium frequencies
are critical for obtaining high-quality images. In radio-
electronic devices (especially in military equipment),
such as filters and resonators, piezoceramic elements
provide reliable and efficient operation in conditions of
variable frequencies [4].

However, mathematical modeling of the electri-
cal impedance of piezoceramic disks oscillating in the
medium frequency range is currently a challenging task
posed by the simultaneous action of interconnected
mechanical and electrical processes within the materi-
al. Therefore, a difficult problem for the calculations

is to present an accurate account of these processes
and predict the impedance behavior under different
operating conditions. On the other hand, traditional
modeling methods cannot provide sufficient accuracy
in every case, especially in conditions when the pi-
ezoceramic disk operates in modes close to resonance
or anti-resonance frequencies [5], which is a signifi-
cant challenge for engineers and researchers seeking to
improve the efficiency and reliability of piezoceramic
components.

In general, mathematical modeling of a pi-
ezoceramic disc’s electrical impedance in the medium
frequency range, as well as studying its behavior, is
an indispensable step in developing radio engineer-
ing and functional instrumentation. Understanding the
impedance behavior will enable creating more accurate
models to optimize the design and control the operati-
on of piezoceramic elements. This, in turn, will improve
the quality and reliability of electronic devices in which
these elements are used.
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1 The relevance of the research
based on the results of the
publication analysis

A cohort of scientists and research organizati-
ons across the globe are engaged in the field of
mathematical modeling of piezoceramic discs’ electri-
cal impedance, since this topic is relevant for the
development of various technological fields.

The leading international research institutes
include the Massachusetts Institute of Technology
(MIT), Boston University, and The University of Texas
at Austin.

The researchers at these institutions have made a
significant contribution to the development of theoreti-
cal models and methods for analysing piezoceramic
materials. For instance, Professor Ekinci K. L. [6] from
Boston University is known for the developments in the
field of piezoelectric materials and sensor technologi-
es, and Professor Robert H. Bishop [7] from Austin
(Texas) is engaged in improving the modeling methods
of piezoceramic resonators and their application in
electronics.

European research centers are also actively involved
in this research direction. For example, scientists
from European scientific institutions, such as the Max
Planck Institute in Germany, the Imperial College of
London, the Catholic University of Leuven in Belgi-
um, and others conduct large-scale research on the
properties of piezoceramic materials and their appli-
cations in various devices. Dr. Ilias Katsouras [8] from
the Max-Planck Institute is one of the leading experts
in the field of piezoelectric materials, and Professors
J. Holterman and W.A. Groen [9] from Delft Uni-
versity of Technology (the Netherlands) specialise in
mathematical modeling of the impedance piezoceramic
elements.

In Asia, relevant research is being conducted by
Fumio Narita [10], Professor in the Department of
Frontier Sciences for Advanced Environment at Tohoku
University in Japan. His current research focuses
on deploying characterization techniques to penetrate
into the fundamental structure-property relations of
complex multifunctional composite materials.

In Ukraine, there are numerous academic communi-
ties that are vigorously researching mathemati-
cal modeling of the piezoceramic disks’ electrical
impedance. For example, the National Technical Uni-
versity of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute” (KPI) is a leading Ukrainian research
center in this field. Professor Y.M. Poplavko at
the Department of Microelectronics is a well-known
researcher in ferroelectric and dielectric physics, and
the scientific group headed by him is engaged in the
development of new modeling and analysis methods,
including piezoceramic disks [11].

Another significant scientific center in Ukraine is
the Institute for Problems of Material Sciences NAS
of Ukraine (IPM NASU). The Institute conducts
fundamental research on the properties of piezoceramic
materials, as well as on the novel approaches to their
mathematical modeling. Dr. G.S. Oleynyk is a leading
academic at the Institute, who works on the theory
and practice of using ceramic piezoceramic materials
in various devices [12].

Thus, research in mathematical modeling of pi-
ezoceramic discs’ electrical impedance has been
intensely developed by numerous researchers and sci-
entific organizations both abroad and in Ukraine.
The results of these studies are definable for the
development of radio engineering, instrument building,
medical technology and many other fields that require
accurate and reliable methods to analyze and control
piezoelectric materials.

Therefore, mathematical modeling of a pi-
ezoceramic disc’s electrical impedance in the medium
frequency range is indispensably relevant and promis-
ing in view of the constant technological development
and the growing demand for high-precision devices in
various industrial sectors.

2 Formulation and solution of
the problem of mathematical
modeling a disc piezoceramic
transducer that oscillates in
the medium frequency range

Here, we present a disk with a radius R many times
greater than its thickness a. The disk is located in a
cylindrical coordinate system p, ¢, z, the origin of which
is aligned with the center of its lower surface. The outer
surfaces of the disk along the heights 2z =0 and z = «
are electrodes, i.e. surfaces covered with a thin layer of
silver (up to 0.01 mm) with the thermal vacuum deposi-
tion technology described in a recent study [13]. The
lower disk surface (z = 0) has a zero potential, since it
is grounded, while electric potential Upe®? (Uj is the
amplitude value of the electric potential) is supplied to
the upper surface z = «. The value for this potential
is to be selected from the condition Up/a << 0,1 Ey,
where Eg = 2 MV /m is the electric field strength in the
polarizing material of the disk, which guarantees the
absence of nonlinear effects; i = /—1 is the imaginary
unit; w is the angular sign inversion frequency of the
potential; ¢ denotes time (Fig. 1).

We will accept medium frequencies as the
frequency range within which the scale unit of spati-
al inhomogeneity of the stress-strain state (elastic
wavelength) becomes commensurate with the radi-
us of the piezoceramic disk. For thin disks, when
the ratio is /R << 1, it follows from the above
formulation that the stress-strain state remains practi-
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cally unchangeable across the disk’s thickness. From
boundary conditions [14], it follows that 0,, = 0., =
0V (p,z2) € V. When E, = 0, equation o,, = 0
leads to e, = €, = 0V (p, 2) € V.
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Fig. 1. Calculation diagram of a piezoceramic disk osci-
llating within the middle frequency range

Under the above assumptions, the generalized
Hooke’s law provides for

Opp = C1E15pp + ClEQE(p(p + 0{32622 - 631LCZ7 (1)
O¢pp = ClEQEpp + C1E15¢¢ + Cfggzz - 631Eza (2)
0 = clhepp + Clagos + Chsez. — essE..  (3)
It follows from (3) that
E
c €33
€zz = —%(Epp + £g9) + TE? (4)
€33 €33

Thus, substituting (4) between relations (1) and (2)
yields

"

Opp = Cli€pp T C12€pp — 631Ez, (5)

= 0 E 6

Tpp = C12€pp + Cl1€pp — €310, (6)

_  E E\2,.E . _  .E

where ¢17 = cff — (cfB)7 /5 2 = oy -

E\2/, .E . _ E ;

(cf)"/cks 5 e5y = es1 — ess/chy  are material

constants for the planar oscillation mode, i. e., for the
deformation mode when o,, = 0.

The component of the electrical induction vector
D, = e3i1(epp + €4p) + €33, + X53E., after eli-
minating deformation ¢,,, is determined as

_ 10 2 . Uo
D, = T [Pu(p ) (P)} T XazT (7)
where x%s = X353 (1 + Ax3s) is dielectric constant

for the planar oscillation mode. The addend Ax3, =
€33/ (x55¢t;)  with material constant values typical
for PZT-type ceramics [15] (¥} = 110GPa; cf, =
60 GPa; cf; = 100 GPa; ez3 = 18 C/m?; e3; =
—8 C/m? and x5; = 1400 x0; xo = 8, 85-10712 F/m
denote dielectric constant of vacuum or dielectric
constant) does not exceed 0,262.

When determining component D, by expression
(7), the formula calculating the electrical impedance
of an oscillating disk reads

U

Ze v e
() iwCHE® ()

(8)

where C3 = mR%y3;/a is the dynamic electrical
capacitance of a piezoceramic disk for the planar osci-
llation mode, i.e., the electrical capacitance in the
mid-frequency range. Function Z(*) (w) is calculated by
the formula:

— 2637104“(2) (R) — Up.

=(%) (w) R
33

(9)

To determine the radial component of the disc’s
material particles’ displacement vector averaged over
the thickness of the disk at medium frequencies, we
average the equation of steady radial oscillations [14].
Since

Sop=(p, @) = ap:(p, 0)] =0,

the result of averaging can be represented by the
following expression

Doy (p) 1 (2) ()
“op + P opy (P) — T4 (P)} +

+ powul? (p) = 0.

b (10)

Normal stresses af;’f,) (p) and o'((;z (p) are to be

determined from the relations (5) and (6):

z 1 r
UF(’P) (p) = o /Upp (p) dz =
0
Hul® (2)
=c11 g (p) + C12 ) - €§1E,§z) (P>7 (11)
«
(=) y_ L _
Thp (P) = o | 790 (p) dz =
0
PO (=)
T B Ll R EE)
Since
_ e 0 « (2)
D-(p) = S [ou (0)] + xiaB (), (13)

it follows from comparing two physically equivalent
definitions of the axial component of the electric
induction vector (7) and (13) that
ED (p) = ~Uo/a. (14)
Substituting relations (11) and (12) into the ordi-

nary differential equation (10) obtains the standard
equation for Bessel functions

2 0%ul? (p) aul? (p)
d p? op

+ [0 = 1) uf? (o) = 0,
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the solution for which consequently reads
ul? (p) = ATy (M),

where A is the constant to be determined; Jy (Ap) is
first order Bessel function; A = w/y/c11/po is the
wave number of radial vibrations in the piezoceramic
disk.

The constant A is determined from the boundary
condition o) (R) = 0 (while condition o, (R) = 0
is inherently satisfied) as follows

(15)

Note that the ratio £»;1 is equal to the ratio wg; =
Wr2 /we1 , 1.e., the circular frequencies of the second and
first radial electromechanical resonances, which can be
easily and accurately determined experimentally. Note
also that the numerical values of the equation roots
(18) change insignificantly compared to the change
in the k-parameter. This must be considered when
performing measurements, which must be performed
with all possible care.

Table 1 The first two roots of the equation x Jy (z) —

A = _623:?10 ZE Jo(AR) 71(%1 — k) LOR)]’ (1 = k) Ji(z) = 0.
where Jy (AR) is zero order Bessel function; &k = k T o €0
c12/c11 is a number less than one. Substituting the 0,00 1841184 5.331443 2,895660
;/alge of the con§tant A 1nt9 fo'rmula (1?), and substi- 0.05 1.878080 5341153 5842532
uting the resulting expression into relation (9), we can
rewrite expression (8) as: 0,10 | 1,915393 | 5,350843 | 2,793601
1 0,15 1,950511 5,360511 2,748259
Za(w) = —== FO (w), (16) 0,20 1,984414 | 5,370155 | 2,706167
8 0,25 2017172 | 5,379773 | 2,666988
where 0,30 2,048850 | 5,380364 | 2,630434
FO) () = ARJo (AR) — (1 — k) Ji(AR) 0,35 2,079508 | 5,398028 | 2,596253
ARJo (AR) — (1 — k — 2K2,) J; (AR)’ 0,40 | 2,109198 | 5408462 | 2,564226
, _ (a7) 045 | 2,137971 | 5417963 | 2,534162
K2 = (e%1) /(011X§3) is square electromechamcal 0,50 2,165871 5427433 2,505889
cguphng co‘efﬁgen“c of the ‘polarl‘zed fuhro,ugh thickness 0.55 5192942 5436860 2.479259
piezoceramic disk in a radial oscillations’ mode.

Function F*) (w) determined by expression (17) 0,60 2,219221 5,446270 2,454137
has a defined number of characteristic points on the w 0,65 2,244744 5,455635 2,430404
frequency axis. At w,., frequency, which corresponds 0,70 2,269547 5,464962 2,407953
to the m-th root of the equation, 0,75 2,293658 5,474251 2,386690

2o (@) — (1 — k) Ji(z) = 0, (18) 0,80 | 2,317109 | 5483500 | 2,366527

0,85 2,339926 5,492708 2,347385

the function is F*) (W) = 0. At w,y, frequency, 0.90 5 362135 5 501874 5329195
the sign inversion frequency of the Coulomb forces ’ ! ’ !

deforming the piezoceramic disk coincides with the 0,95 2,383761 9,510998 2,311892

m-th natural frequency of the radial axisymmetric vi- 1,00 2,404826 5,520078 2,295417

brations of the disk and there occurs resonant energy
consumption from the source of elastic vibrations. Si-
nce an ideal source of a harmonically time-varying
electrical potential difference has an infinite supply
of energy at frequencies of radial electromechanical
resonances, the amplitude values of the ugf) (p) radial
component of the disk’s material particles displacement
vector increase indefinitely. The amplitude values of
the strain tensor components increase accordingly, and,
as a consequence, the amplitude values of the electric
charge on the surface z = « increase indefinitely.
The latter induces an unlimited growth of amplitude
values of alternating current in the conductors that are
connected to the electrode coating of the disk. The
infinite currents at the output of an ideal generator
of electric voltage arise as a result of a short circuit,
i.e., when the load resistance is Ze; (wrm) = 0.

Table 1 presents numerical values of the first two
roots (z; and xg) of equation (18) and their &; =
Zo/x1 ratio depending on the k-parameter.

The w,,, frequencies of radial resonances are
followed by the frequencies at which the denomi-
nator of expression (17) vanishes. At these frequenci-
es, the F'**) (w) function increases infinitely. Accordi-
ngly, the electrical impedance Z (w) of the pi-
ezoceramic disk increases indefinitely since the polari-
zation charges completely compensate for the electrical
charge that the electrical signal generator generates
on the electrode coating of the disc. The net charge
(Q vanishes, and the electric current in the conductors
disappears. This corresponds to an open electrical ci-
rcuit or an electrical circuit in which an infinitely large
resistance is included. In this case, naturally, the pi-
ezoceramic disk does not consume energy from the
oscillation source, i.e., from the generator. To emphasi-
ze the specificity and difference of this state from the
state at the frequencies of electromechanical resonance,
the wy, frequencies where Z; (wam) — oo are called
the frequencies of electromechanical antiresonance.
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In other words, at the frequencies of
electromechanical antiresonance wg.,, the electrical
impedance of the piezoceramic disc Z,; (w) increases
indefinitely, and the electric current in the conductors
vanishes, which corresponds to the state of an open
circuit.

Thus, in the medium frequency range, similarly
to the low frequency range, there is a change in the
numerical values of the dynamic electrical capacity
and analytical design due to the peculiarities of the
electro-elastic state of the oscillating disk Z(*) (w).

3 Discussing of the modeling
results

In a real experiment, there are no zeros or infinities,
since in real elastic materials there are always viscous
friction losses. These losses can be calculated through
parameter (), which has the meaning of the mechani-
cal quality factor of the material. The @-factor is a
dimensionless number, the value of which is inversely
proportional to the energy losses in the oscillatory
system per period. In ideal elastic bodies, where vi-
scous friction entails no energy loss, @ — oo. In real
objects, the @ quality factor has a finite value. Thus,
the elasticity moduli cg)\ (Q) read as follows [16]

A (@Q) = (1 +1/Q), (19)
where ¢f), is the static modulus of elasticity; i = +/—1
is unit imaginary number.

Figure 2 demonstrates radial displacement modules
ugz) (p) in a piezoceramic disk with radius R = 33 x

1073 m and thickness o = 3-107% m. Disc material (pi-
ezoceramic) parameters are as follows: ¢} = 110 GPa;
ck, = 60GPa; ¢l = 100GPa; e33 = 18C/m?;
e31 = —8C/m? u x§; = 1400x0; Q = 100; k =
c12/c11 = 0,324, The calculations were performed

at the frequencies of the first three electromechanical
resonances. The resonant frequency number is indi-
cated in the figure field next to the corresponding
curve. For the above k-parameter value, the following
values of the equation roots (18) correspond to the
resonant frequencies: x1 = 2,063690; zo = 5,393958
and x3 = 8,574693. The electric potential is Uy =1 V.
We have plotted the values of the dimensionless radial
coordinate p/R along the abscissa axis in Figure 2.
Noteworthy is the extremely rapid decrease in
the levels of radial displacements where the order
of electromechanical resonance increases. This fact is
further illustrated by Figure 3, which shows the change
in the radial displacement modulus uéz) (R) of the
piezoceramic disk lateral surface p = R in a wi-
de frequency range. The calculations were performed
based on the above set of geometric, physical and
mechanical parameters of the oscillating disk. The
numbers in the figure field indicate the numbers of

electromechanical resonances. Along the abscissa axis
in Figure 3, the dimensionless wave number x = AR
is plotted. From the calculation results presented in
Figure 3, it follows that at frequencies in the vici-
nity of the first thickness resonance (approximately
corresponding to the values AR = 40 = 60), the
radial displacements of the disc’s material particles,
being calculated under the assumption that o,, = 0,
cease to exist.

u‘pz’(pﬁx10'7m
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Fig. 2. Radial displacements of the piezoceramic disk
material particles at the frequencies of the first three
electromechanical resonancese
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Fig. 3. Radial displacements of the piezoceramic disk’s
lateral surface in a wide frequency range

Figure 4 demonstrates the change in the electrical
impedance modulus of a piezoceramic disk in the mid-
frequency range (Fig. 4a). The inset in Figure 4a shows
the change in Z.; (w) modulus values in the immedi-
ate vicinity of the first electromechanical resonance
frequency w;1. Figure 4b reflects the change in the
electrical impedance modulus in the vicinity of the
of the first electromechanical antiresonance frequency
wq1. The disk’s geometric and physical mechanical
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parameters serving as a base for calculations accord-
ing to formula (16), are indicated in the comments to
Figure 3.

Formula (19) implies that expressions (16) and (17)
are functions of a small parameter e = 1/Q. Expanding
the function Z.; (w) into a power series in a small
parameter €, and limiting the expansion to the first
power of this parameter, we obtain the following esti-
mate of the piezoceramic mechanical quality factor
[17]:

R[(22, 4+ k—1) Ji (zm) — k Jo (xm)]

©= 42,003 (0) K§1J1 (@m) Zet (xm) (20)

where x,, is the m-th root of the equation (18);
/Re ¢11/po is the propagation speed of radial
vibrations in piezoceramics, determined ignoring the
losses caused by viscous friction; C} (0) is the dynamic
electrical capacitance of an oscillating disk determi-
ned through the dielectric constant Re x3; ignoring
the losses caused by viscous friction; Zg; (x,,) is the
electrical impedance of the disk at the m-th frequency
of electromechanical resonance. Note that Z.; (z,,) is
a real value. From the inset in Figure 4a Z. (z1) =
7,8 Ohms is determined. Substituting this quantity
into formula (20) produces value @ = 100,096. The
value Q = 100 was included in the calculation,
i.e., the resulting estimate is in good agreement with
the true value of the mechanical quality factor, and
the discrepancy between theoretically obtained data
and experimentally determined results was less than

1073%.

7|Ze1(p))|, kﬂ

v o=
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Fig. 4. Module of electrical impedance of the disk in
the mid-frequency range

Several studies attempt to determine the mechani-
cal quality factor with the ratio wq1/Awg, 707 , where
wq1 is the angular frequency of the first electromagnetic
resonance; Awg o7 is the frequency range at the level
of =3 dB from the modulus value Z;; (wq1), i. €., maxi-
mum value of electrical impedance at the frequency
of the first antiresonance. Performing the calculations
according to the graph shown in Figure 4b produces
@ = 153, 3 value that differs significantly from the Q =
100 value included in the calculation. This discrepancy

is linked to the electromechanical anti-resonance which
appears as a consequence of the interaction (mutual
compensation) of the electric charge, which is induced
by the electric potential difference generator on the
electrode coating of the disk, and the polarization
charge, which emerges as a result of the piezoelectric
deformation. In other words, unlike electromechanical
resonance, viscous friction losses are by no means the
only factor determining the magnitude of the electrical
impedance.

Figure 5 demonstrates the frequency-dependent
change occurring in the modulus of the dimensi-
onless function F*) (w), which is defined by expression
(17). This calculation was performed for the same
set of geometric, physical, and mechanical parameters
included into the calculations presented by Figure 3
and Figure 4. The inset in the Figure 5 field shows
the change in the F*) (w) function modulus within the
range of dimensionless wave numbers 3 < AR < 5
or, equally, dimensionless frequencies 3 < w7y < 5
(o = R/v ), where |F®) (w)| ~ 1. With \*R =
w*g = 3,83 values, the F*) (w) function modulus
is equal to unity and the electrical impedance is defi-
ned as [Zg (w*)| = 1/w*|C3| . Known |Zg (w*)]
value enables us to determine the modulus of dynamic
electrical capacitance in the mode of planar oscillations
of the piezoceramic disk, and, as a result, to obtain
an estimate of the dielectric constant modulus x3s.
Since while performing measurements of w* frequency
at which [F*) (w*)| = 1is a priori unknown, its value,
to a first approximation, can be estimated as follows:
w* 2 (w, + w,)/2, where w, = (w1 + wp2)/2 and
W = (wal + wa2)/2 .

F) )
1 e .
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1,4| ()|
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20 1.}
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Fig. 5. Frequency-dependent alteration in the modulus
of function F*) (w)

Conclusions

The study offers a mathematical model developed
for disc piezoelectric transducers made of piezocera-
mics. The model makes it possible to estimate the
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electrical impedance of the disk transducers studied
here and their quasi-static electrical capacity in the
mid-frequency range depending on their geometrical
and physical-mechanical parameters.

The study has shown that a piezoceramic disc
operating in the medium frequency range, i.e., when
the elastic wavelength becomes commensurate with the
radius of the piezoceramic disk, attains electromechani-
cal anti-resonance at a wq., frequency, when its electri-
cal impedance is Zg (wem) — 00. The specific
property of this state is that under these conditions,
the polarization charges completely compensate the
electric charge, hence the electric current vanishes and
energy consumption from the generator drops to zero.

The calculations have proved that at frequencies in
the vicinity of the first thickness resonance (approxi-
mately corresponding to the wave number values in
the range of 40-60), the radial displacements of the
material particles of the disc cease to exist under the
0., = 0 condition. At the same time, the research has
revealed an extremely rapid decrease in the radial shift
levels as the number of electromechanical resonances
increases.

The estimate of the mechanical quality factor of
piezoceramic disk elements, obtained after calculat-
ing the mathematical model, highly correlates with
the real values of the mechanical quality factor. The
established fact was confirmed by a high degree of
agreement between theoretically obtained data and
experimentally determined results (the discrepancy
was less than 1072%).

The data presented in this paper have been
obtained as implementation of the experimental sci-
entific and technical project titled “Development
of an automated ultrasonic system for extract-
ing plant raw materials to produce multi-nutrient
functional drinks for rehabilitation and preventing
post-traumatic stress disorders” (national registrati-
on number: 0124U000713, 2024-2025), which is being
carried out at the Cherkasy State Technological Uni-
versity.
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MareMaTHIHE MOAEIIOBAHHS €JIEKTPHYHOTO IMIENAHCY II'€30KePaMiTHOrO QHCKA, MO KOJIHBAETLCS B MIMPOKOMY AlamasoHi...) 45

Y mamiit cTaTTi IPEACTABJIEHO MHOIAJIbIINE JTOCTIIXKEHHS
3 MaTEeMATHIHOTO MOIEJIIOBAHHS €IEKTPUYHOTO IMITEIAH-
Cy I’'€30KEpPaMigHOrO JUCKA B TTUPOKOMY CIEKTPI 9acCTOT,
3 0COOJIMBOIO yBaromo 0 CePeIHHOYACTOTHOTO iAlla30Hy,
TOOTO KOJIM [OBXKWHA MPYKHOI XBUJIL CTA€ CIIBMIpHOIO
3 paaiycoM IT'€30KEPAMIYHOTO JINCKA, SIKWl € BaKJIABUM
/1S 9YUCJeHHUX CYyYacHUX 3aCTOCyBaHb. Po3pobsiena mare-
MaTUYHA MOIEb IS IT'€30€JIeKTPUUHIX TEePEeTBOPIOBAYIB
JUCKOBOI (OpMH 3 IT'€30KEpPaMiKH, MO JO3BOJISIE OIIHUTH
iX eJIeKTPUYHMII IMITeTaHC Ta KBA3ICTATUYIHY €IeKTPHIHY
E€MHICTh B CEpeIHhOYACTOTHIN 00JaCTi, 3aJIeKHO BiZl Teo-
METPUYHUX Ta (PI3UKO-MEXAHIYHUX XaPAKTEPUCTUK TAKUX
neperBopioBadiB. BeraHoBieHo, 1o 11’ €30KepaMidHuil JUCK
V CepeIHhOYACTOTHIN 00/IACTi IOCATAE CTAHY €JIEKTPOMEXa-
HIYHOI'0 aHTHPE30HAHCY HA YACTOTIi, HA AKiil 10T0 eleKTpH-
9HUi iMIie1aHc TpaMye A0 Heckindenocti. e BinbyBaerncs
Yepe3 MOBHY KOMITEHCAINIO MOIAPU3AMIMHIX 3apAiB eje-

KTPUYHUM 3aPsIOM, IO MPU3BOAUTL 0 3HUKHEHHS eJie-
KTPUYHOTO CTPYMY Ta BIICYTHOCTI CIIOXKWBAHHS €HEPTil
Bil reHepaTopa. Po3paxyHKm mokazasd, IO Ha YacTOTaX
106JIM3y IEPIIOro TOBIMHHOTO Pe30HaHCY (Bimnosimae Ges-
PO3MIpHOMY XBHJILOBOMY [mciay Bim 40 mo 60), pamiann-
HI 3MIINIEHHS MaTepiaJIbHUX YaCTUHOK JIUCKA 3HUKAIOTH.
Bingmadeno ayxke mIBHIKe 3MEHIIEHHS DPIBHIB pa/iajib-
HUX 3CYBIB 31 30I/IbIIEHHSIM HOMEpPA €JIeKTPOMEXAHITHOTO
pesonancy. Ilpm mpomy, OrmiHKa MexXaHIYHOI TOOPOTHOCTI
’€30KepaMivYHMX JIMCKOBUX €JIEMEHTIB, OTPHUMaHa 3a J0M0-
MOT0I0 MAaTEeMAaTHYIHOI MOJIeJIi, TICHO KOPeJIIoE 3 PeabHIMU
3HAYEHHSMH, M0 MiATBEPIZKEHO BUCOKOI 301KHICTIO Mik
TEOPETUYIHUMU Ta €KCIIEPUMEHTAIbHIMU Pe3yIbTATAMMI.

Ka0406i  ca06a: 11'€30€/IEKTPUYHAN  II€PETBOPIOBAY;
AKYCTOEJIEKTPOHIKA; MaTeMaTHYHE MOJE/IIOBAHHS;

ITAHC; JUCKOBHUHA €JIEMEHT
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