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This paper presents further developments in mathematical modeling of the electrical impedance of a
piezoceramic disk in a wide frequency range, specifically focusing on the mid-frequency range, i.e., when
the elastic wavelength becomes commensurate with the radius of the piezoceramic disk, which is important
for numerous modern applications. A mathematical model was developed for disk piezoelectric transducers
made of piezoceramics to estimate their electrical impedance and quasi-static electrical capacity in the
medium frequency range basing on their geometrical, physical, and mechanical characteristics. The research
has found that a piezoceramic disc attains electromechanical anti-resonance in the medium frequency range
at frequency, at which its electrical impedance follows to infinity. This effect is due to the polarization
charges being completely compensated by the electric charge, when the electric current vanishes and energy
consumption from the generator is absent. The calculations proved that at frequencies close to the first thick-
ness resonance (corresponding to the dimensionless wave number from 40 to 60), the radial displacements of
material particles of the disk vanish. A very rapid decrease in the levels of radial shifts with a simultaneous
increase in the electromechanical resonance number was noted. The evaluation of the mechanical quality
factor of piezoceramic disk elements, obtained with the developed mathematical model, closely correlates
with real values, which is confirmed by the high agreement between theoretical and experimental results.
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Introduction

Piezoceramic elements find multiple applications
in modern technology due to their unique properti-
es of high-precision conversion of mechanical energy
into electrical energy and vice versa [1]. In particular,
disk-shaped elements in the medium frequency range
are extremely relevant in various fields, such as radio
engineering, ultrasonic diagnostic systems, sensors and
actuators [2, 3], as well as in communication and navi-
gation technologies. Hence, piezoceramic disks are used
in ultrasonic transducers for medical diagnostics, where
operation accuracy and stability in medium frequencies
are critical for obtaining high-quality images. In radio-
electronic devices (especially in military equipment),
such as filters and resonators, piezoceramic elements
provide reliable and efficient operation in conditions of
variable frequencies [4].

However, mathematical modeling of the electri-
cal impedance of piezoceramic disks oscillating in the
medium frequency range is currently a challenging task
posed by the simultaneous action of interconnected
mechanical and electrical processes within the materi-
al. Therefore, a difficult problem for the calculations

is to present an accurate account of these processes
and predict the impedance behavior under different
operating conditions. On the other hand, traditional
modeling methods cannot provide sufficient accuracy
in every case, especially in conditions when the pi-
ezoceramic disk operates in modes close to resonance
or anti-resonance frequencies [5], which is a signifi-
cant challenge for engineers and researchers seeking to
improve the efficiency and reliability of piezoceramic
components.

In general, mathematical modeling of a pi-
ezoceramic disc’s electrical impedance in the medium
frequency range, as well as studying its behavior, is
an indispensable step in developing radio engineer-
ing and functional instrumentation. Understanding the
impedance behavior will enable creating more accurate
models to optimize the design and control the operati-
on of piezoceramic elements. This, in turn, will improve
the quality and reliability of electronic devices in which
these elements are used.
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1 The relevance of the research

based on the results of the

publication analysis

A cohort of scientists and research organizati-
ons across the globe are engaged in the field of
mathematical modeling of piezoceramic discs’ electri-
cal impedance, since this topic is relevant for the
development of various technological fields.

The leading international research institutes
include the Massachusetts Institute of Technology
(MIT), Boston University, and The University of Texas
at Austin.

The researchers at these institutions have made a
significant contribution to the development of theoreti-
cal models and methods for analysing piezoceramic
materials. For instance, Professor Ekinci K. L. [6] from
Boston University is known for the developments in the
field of piezoelectric materials and sensor technologi-
es, and Professor Robert H. Bishop [7] from Austin
(Texas) is engaged in improving the modeling methods
of piezoceramic resonators and their application in
electronics.

European research centers are also actively involved
in this research direction. For example, scientists
from European scientific institutions, such as the Max
Planck Institute in Germany, the Imperial College of
London, the Catholic University of Leuven in Belgi-
um, and others conduct large-scale research on the
properties of piezoceramic materials and their appli-
cations in various devices. Dr. Ilias Katsouras [8] from
the Max-Planck Institute is one of the leading experts
in the field of piezoelectric materials, and Professors
J. Holterman and W.A. Groen [9] from Delft Uni-
versity of Technology (the Netherlands) specialise in
mathematical modeling of the impedance piezoceramic
elements.

In Asia, relevant research is being conducted by
Fumio Narita [10], Professor in the Department of
Frontier Sciences for Advanced Environment at Tohoku
University in Japan. His current research focuses
on deploying characterization techniques to penetrate
into the fundamental structure-property relations of
complex multifunctional composite materials.

In Ukraine, there are numerous academic communi-
ties that are vigorously researching mathemati-
cal modeling of the piezoceramic disks’ electrical
impedance. For example, the National Technical Uni-
versity of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute” (KPI) is a leading Ukrainian research
center in this field. Professor Y.M. Poplavko at
the Department of Microelectronics is a well-known
researcher in ferroelectric and dielectric physics, and
the scientific group headed by him is engaged in the
development of new modeling and analysis methods,
including piezoceramic disks [11].

Another significant scientific center in Ukraine is
the Institute for Problems of Material Sciences NAS
of Ukraine (IPM NASU). The Institute conducts
fundamental research on the properties of piezoceramic
materials, as well as on the novel approaches to their
mathematical modeling. Dr. G. S. Oleynyk is a leading
academic at the Institute, who works on the theory
and practice of using ceramic piezoceramic materials
in various devices [12].

Thus, research in mathematical modeling of pi-
ezoceramic discs’ electrical impedance has been
intensely developed by numerous researchers and sci-
entific organizations both abroad and in Ukraine.
The results of these studies are definable for the
development of radio engineering, instrument building,
medical technology and many other fields that require
accurate and reliable methods to analyze and control
piezoelectric materials.

Therefore, mathematical modeling of a pi-
ezoceramic disc’s electrical impedance in the medium
frequency range is indispensably relevant and promis-
ing in view of the constant technological development
and the growing demand for high-precision devices in
various industrial sectors.

2 Formulation and solution of

the problem of mathematical

modeling a disc piezoceramic

transducer that oscillates in

the medium frequency range

Here, we present a disk with a radius R many times
greater than its thickness 𝛼. The disk is located in a
cylindrical coordinate system 𝜌, 𝜑, z, the origin of which
is aligned with the center of its lower surface. The outer
surfaces of the disk along the heights z = 0 and z = 𝛼
are electrodes, i.e. surfaces covered with a thin layer of
silver (up to 0.01 mm) with the thermal vacuum deposi-
tion technology described in a recent study [13]. The
lower disk surface (z = 0) has a zero potential, since it
is grounded, while electric potential 𝑈0𝑒

𝑖𝜔𝑡 (U0 is the
amplitude value of the electric potential) is supplied to
the upper surface z = 𝛼. The value for this potential
is to be selected from the condition 𝑈0/𝛼 << 0, 1𝐸0,
where 𝐸0

∼= 2𝑀𝑉 /𝑚 is the electric field strength in the
polarizing material of the disk, which guarantees the
absence of nonlinear effects; 𝑖 =

√
−1 is the imaginary

unit; 𝜔 is the angular sign inversion frequency of the
potential; t denotes time (Fig. 1).

We will accept medium frequencies as the
frequency range within which the scale unit of spati-
al inhomogeneity of the stress-strain state (elastic
wavelength) becomes commensurate with the radi-
us of the piezoceramic disk. For thin disks, when
the ratio is 𝛼/𝑅 << 1, it follows from the above
formulation that the stress-strain state remains practi-
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cally unchangeable across the disk’s thickness. From
boundary conditions [14], it follows that 𝜎𝜌𝑧 = 𝜎𝑧𝑧 =
0 ∀ (𝜌 , 𝑧) ∈ 𝑉 . When 𝐸𝜌 = 0, equation 𝜎𝜌𝑧 = 0
leads to 𝜀𝜌𝑧 = 𝜀𝑧𝜌 = 0 ∀ (𝜌 , 𝑧) ∈ 𝑉 .

Fig. 1. Calculation diagram of a piezoceramic disk osci-
llating within the middle frequency range

Under the above assumptions, the generalized
Hooke’s law provides for

𝜎𝜌𝜌 = 𝑐𝐸11𝜀𝜌𝜌 + 𝑐𝐸12𝜀𝜑𝜑 + 𝑐𝐸12𝜀𝑧𝑧 − 𝑒31𝐸𝑧, (1)

𝜎𝜑𝜑 = 𝑐𝐸12𝜀𝜌𝜌 + 𝑐𝐸11𝜀𝜑𝜑 + 𝑐𝐸12𝜀𝑧𝑧 − 𝑒31𝐸𝑧, (2)

0 = 𝑐𝐸12𝜀𝜌𝜌 + 𝑐𝐸12𝜀𝜑𝜑 + 𝑐𝐸33𝜀𝑧𝑧 − 𝑒33𝐸𝑧. (3)

It follows from (3) that

𝜀𝑧𝑧 = −𝑐𝐸12
𝑐𝐸33

(𝜀𝜌𝜌 + 𝜀𝜑𝜑) +
𝑒33
𝑐𝐸33

𝐸𝑧. (4)

Thus, substituting (4) between relations (1) and (2)
yields

𝜎𝜌𝜌 = 𝑐11𝜀𝜌𝜌 + 𝑐12𝜀𝜑𝜑 − 𝑒*31𝐸𝑧, (5)

𝜎𝜑𝜑 = 𝑐12𝜀𝜌𝜌 + 𝑐11𝜀𝜑𝜑 − 𝑒*31𝐸𝑧, (6)

where 𝑐11 = 𝑐𝐸11 −
(︀
𝑐𝐸12

)︀2
/𝑐𝐸33 ; 𝑐12 = 𝑐𝐸12 −(︀

𝑐𝐸12
)︀2
/𝑐𝐸33 ; 𝑒*31 = 𝑒31 − 𝑒33/𝑐

𝐸
33 are material

constants for the planar oscillation mode, i. e., for the
deformation mode when 𝜎𝑧𝑧 = 0.

The component of the electrical induction vector
𝐷𝑧 = 𝑒31 (𝜀𝜌𝜌 + 𝜀𝜑𝜑) + 𝑒33𝜀𝑧𝑧 + 𝜒𝜀

33𝐸𝑧, after eli-
minating deformation 𝜀𝑧𝑧, is determined as

𝐷𝑧 =
𝑒*31
𝜌

𝜕

𝜕 𝜌

[︁
𝜌 𝑢(𝑧)

𝜌 (𝜌)
]︁

− 𝜒*
33

𝑈0

𝛼
, (7)

where 𝜒*
33 = 𝜒𝜀

33 (1 + ∆𝜒*
33) is dielectric constant

for the planar oscillation mode. The addend ∆𝜒*
33 =

𝑒233/
(︀
𝜒𝜀
33𝑐

𝐸
33

)︀
with material constant values typical

for PZT-type ceramics [15] (𝑐𝐸11 = 110GPa; 𝑐𝐸12 =
60 GPa; 𝑐𝐸33 = 100 GPa; 𝑒33 = 18 C/m2; 𝑒31 =
−8 C/m2 and 𝜒𝜀

33 = 1400𝜒0; 𝜒0 = 8 , 85·10−12 F/m
denote dielectric constant of vacuum or dielectric
constant) does not exceed 0,262.

When determining component 𝐷𝑧 by expression
(7), the formula calculating the electrical impedance
of an oscillating disk reads

𝑍𝑒𝑙 (𝜔) = − 𝑈0

𝑖𝜔𝐶*
𝜕Ξ

(*) (𝜔)
, (8)

where 𝐶*
𝑑 = 𝜋𝑅2𝜒*

33/𝛼 is the dynamic electrical
capacitance of a piezoceramic disk for the planar osci-
llation mode, i.e., the electrical capacitance in the
mid-frequency range. Function Ξ(*) (𝜔) is calculated by
the formula:

Ξ(*) (𝜔) =
2𝑒*31𝛼

𝜒*
33𝑅

𝑢(𝑧)
𝜌 (𝑅) − 𝑈0. (9)

To determine the radial component of the disc’s
material particles’ displacement vector averaged over
the thickness of the disk at medium frequencies, we
average the equation of steady radial oscillations [14].
Since

1
𝛼

𝛼∫︀
0

𝜕 𝜎𝜌𝑧

𝜕 𝑧 𝑑𝑧 = 1
𝛼 [𝜎𝜌𝑧 (𝜌 , 𝛼) − 𝜎𝜌𝑧 (𝜌 , 0)] = 0,

the result of averaging can be represented by the
following expression

𝜕 𝜎
(𝑧)
𝜌𝜌 (𝜌)

𝜕 𝜌
+

1

𝜌

[︁
𝜎(𝑧)
𝜌𝜌 (𝜌) − 𝜎

(𝑧)
𝜑𝜑 (𝜌)

]︁
+

+ 𝜌0𝜔
2𝑢(𝑧)

𝜌 (𝜌) = 0. (10)

Normal stresses 𝜎
(𝑧)
𝜌𝜌 (𝜌) and 𝜎

(𝑧)
𝜑𝜑 (𝜌) are to be

determined from the relations (5) and (6):

𝜎(𝑧)
𝜌𝜌 (𝜌) =

1

𝛼

𝛼∫︁
0

𝜎𝜌𝜌 (𝜌) 𝑑𝑧 =

= 𝑐11
𝜕 𝑢

(𝑧)
𝜌 (𝜌)

𝜕 𝜌
+ 𝑐12

𝑢
(𝑧)
𝜌 (𝜌)

𝜌
− 𝑒*31𝐸

(𝑧)
𝑧 (𝜌) , (11)

𝜎
(𝑧)
𝜑𝜑 (𝜌) =

1

𝛼

𝛼∫︁
0

𝜎𝜑𝜑 (𝜌) 𝑑𝑧 =

= 𝑐12
𝜕 𝑢

(𝑧)
𝜌 (𝜌)

𝜕 𝜌
+ 𝑐11

𝑢
(𝑧)
𝜌 (𝜌)

𝜌
− 𝑒*31𝐸

(𝑧)
𝑧 (𝜌) . (12)

Since

𝐷𝑧 (𝜌) =
𝑒*31
𝜌

𝜕

𝜕 𝜌

[︁
𝜌 𝑢(𝑧)

𝜌 (𝜌)
]︁

+ 𝜒*
33𝐸

(𝑧)
𝑧 (𝜌) , (13)

it follows from comparing two physically equivalent
definitions of the axial component of the electric
induction vector (7) and (13) that

𝐸(𝑧)
𝑧 (𝜌) = −𝑈0/𝛼 . (14)

Substituting relations (11) and (12) into the ordi-
nary differential equation (10) obtains the standard
equation for Bessel functions

𝜌2
𝜕2𝑢(𝑧)

𝜌 (𝜌)

𝜕 𝜌2 + 𝜌
𝜕 𝑢(𝑧)

𝜌 (𝜌)

𝜕 𝜌 +
[︁
(𝜆𝜌)

2 − 1
]︁
𝑢
(𝑧)
𝜌 (𝜌) = 0,
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the solution for which consequently reads

𝑢(𝑧)
𝜌 (𝜌) = 𝐴𝐽1 (𝜆𝜌) , (15)

where 𝐴 is the constant to be determined; 𝐽1 (𝜆𝜌) is
first order Bessel function; 𝜆 = 𝜔/

√︀
𝑐11/𝜌0 is the

wave number of radial vibrations in the piezoceramic
disk.

The constant 𝐴 is determined from the boundary

condition 𝜎
(𝑧)
𝜌𝜌 (𝑅) = 0 (while condition 𝜎𝜌𝑧 (𝑅) = 0

is inherently satisfied) as follows

𝐴 = − 𝑒*31𝑈0

𝛼𝑐11
𝑅

[𝜆𝑅𝐽0(𝜆𝑅) − (1 − 𝑘) 𝐽1(𝜆𝑅)] ,

where 𝐽0 (𝜆𝑅) is zero order Bessel function; 𝑘 =
𝑐12/𝑐11 is a number less than one. Substituting the
value of the constant 𝐴 into formula (15), and substi-
tuting the resulting expression into relation (9), we can
rewrite expression (8) as:

𝑍𝑒𝑙 (𝜔) =
1

𝑖𝜔𝐶*
𝜕

𝐹 (*) (𝜔) , (16)

where

𝐹 (*) (𝜔) =
𝜆𝑅𝐽0 (𝜆𝑅)− (1 − 𝑘) 𝐽1 (𝜆𝑅)

𝜆𝑅𝐽0 (𝜆𝑅)− (1− 𝑘 − 2𝐾2
31) 𝐽1 (𝜆𝑅)

;

(17)

𝐾2
31 = (𝑒*31)

2
/(𝑐11𝜒

*
33) is square electromechanical

coupling coefficient of the polarized through thickness
piezoceramic disk in a radial oscillations’ mode.

Function 𝐹 (*) (𝜔) determined by expression (17)
has a defined number of characteristic points on the 𝜔
frequency axis. At 𝜔𝑟𝑚 frequency, which corresponds
to the m-th root of the equation,

𝑥𝐽0 (𝑥) − (1 − 𝑘) 𝐽1 (𝑥) = 0, (18)

the function is 𝐹 (*) (𝜔𝑟𝑚) = 0. At 𝜔𝑟𝑚 frequency,
the sign inversion frequency of the Coulomb forces
deforming the piezoceramic disk coincides with the
m-th natural frequency of the radial axisymmetric vi-
brations of the disk and there occurs resonant energy
consumption from the source of elastic vibrations. Si-
nce an ideal source of a harmonically time-varying
electrical potential difference has an infinite supply
of energy at frequencies of radial electromechanical

resonances, the amplitude values of the 𝑢
(𝑧)
𝜌 (𝜌) radial

component of the disk’s material particles displacement
vector increase indefinitely. The amplitude values of
the strain tensor components increase accordingly, and,
as a consequence, the amplitude values of the electric
charge on the surface 𝑧 = 𝛼 increase indefinitely.
The latter induces an unlimited growth of amplitude
values of alternating current in the conductors that are
connected to the electrode coating of the disk. The
infinite currents at the output of an ideal generator
of electric voltage arise as a result of a short circuit,
i.e., when the load resistance is 𝑍𝑒𝑙 (𝜔𝑟𝑚) = 0.

Table 1 presents numerical values of the first two
roots (𝑥1 and 𝑥2) of equation (18) and their 𝜉21 =
𝑥2/𝑥1 ratio depending on the 𝑘-parameter.

Note that the ratio 𝜉21 is equal to the ratio 𝜔21 =
𝜔𝑟2/𝜔𝑟1 , i.e., the circular frequencies of the second and
first radial electromechanical resonances, which can be
easily and accurately determined experimentally. Note
also that the numerical values of the equation roots
(18) change insignificantly compared to the change
in the 𝑘-parameter. This must be considered when
performing measurements, which must be performed
with all possible care.

Table 1 The first two roots of the equation 𝑥𝐽0 (𝑥) −
(1 − 𝑘) 𝐽1 (𝑥) = 0.

𝑘 𝑥1 𝑥2 𝜉21

0,00 1,841184 5,331443 2,895660

0,05 1,878980 5,341153 2,842582

0,10 1,915393 5,350843 2,793601

0,15 1,950511 5,360511 2,748259

0,20 1,984414 5,370155 2,706167

0,25 2,017172 5,379773 2,666988

0,30 2,048850 5,389364 2,630434

0,35 2,079508 5,398928 2,596253

0,40 2,109198 5,408462 2,564226

0,45 2,137971 5,417963 2,534162

0,50 2,165871 5,427433 2,505889

0,55 2,192942 5,436869 2,479259

0,60 2,219221 5,446270 2,454137

0,65 2,244744 5,455635 2,430404

0,70 2,269547 5,464962 2,407953

0,75 2,293658 5,474251 2,386690

0,80 2,317109 5,483500 2,366527

0,85 2,339926 5,492708 2,347385

0,90 2,362135 5,501874 2,329195

0,95 2,383761 5,510998 2,311892

1,00 2,404826 5,520078 2,295417

The 𝜔𝑟𝑚 frequencies of radial resonances are
followed by the frequencies at which the denomi-
nator of expression (17) vanishes. At these frequenci-
es, the 𝐹 (*) (𝜔) function increases infinitely. Accordi-
ngly, the electrical impedance 𝑍𝑒𝑙 (𝜔) of the pi-
ezoceramic disk increases indefinitely since the polari-
zation charges completely compensate for the electrical
charge that the electrical signal generator generates
on the electrode coating of the disc. The net charge
𝑄 vanishes, and the electric current in the conductors
disappears. This corresponds to an open electrical ci-
rcuit or an electrical circuit in which an infinitely large
resistance is included. In this case, naturally, the pi-
ezoceramic disk does not consume energy from the
oscillation source, i.e., from the generator. To emphasi-
ze the specificity and difference of this state from the
state at the frequencies of electromechanical resonance,
the 𝜔𝑎𝑚 frequencies where 𝑍𝑒𝑙 (𝜔𝑎𝑚) → ∞ are called
the frequencies of electromechanical antiresonance.
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In other words, at the frequencies of
electromechanical antiresonance 𝜔𝑎𝑚, the electrical
impedance of the piezoceramic disc 𝑍𝑒𝑙 (𝜔) increases
indefinitely, and the electric current in the conductors
vanishes, which corresponds to the state of an open
circuit.

Thus, in the medium frequency range, similarly
to the low frequency range, there is a change in the
numerical values of the dynamic electrical capacity
and analytical design due to the peculiarities of the
electro-elastic state of the oscillating disk Ξ(𝜀) (𝜔).

3 Discussing of the modeling

results

In a real experiment, there are no zeros or infinities,
since in real elastic materials there are always viscous
friction losses. These losses can be calculated through
parameter 𝑄, which has the meaning of the mechani-
cal quality factor of the material. The 𝑄-factor is a
dimensionless number, the value of which is inversely
proportional to the energy losses in the oscillatory
system per period. In ideal elastic bodies, where vi-
scous friction entails no energy loss, 𝑄 → ∞. In real
objects, the 𝑄 quality factor has a finite value. Thus,
the elasticity moduli 𝑐𝐸𝛽𝜆 (𝑄) read as follows [16]

𝑐𝐸𝛽𝜆 (𝑄) = 𝑐𝐸𝛽𝜆 (1 + 𝑖/𝑄 ) , (19)

where 𝑐𝐸𝛽𝜆 is the static modulus of elasticity; 𝑖 =
√
−1

is unit imaginary number.
Figure 2 demonstrates radial displacement modules

𝑢
(𝑧)
𝜌 (𝜌) in a piezoceramic disk with radius 𝑅 = 33 ×

10−3 м and thickness 𝛼 = 3·10−3 м. Disc material (pi-
ezoceramic) parameters are as follows: 𝑐𝐸11 = 110GPa;
𝑐𝐸12 = 60GPa; 𝑐𝐸33 = 100GPa; 𝑒33 = 18C/m2;
𝑒31 = −8C/m2 и 𝜒𝜀

33 = 1400𝜒0; 𝑄 = 100; 𝑘 =
𝑐12/𝑐11 = 0, 324. The calculations were performed
at the frequencies of the first three electromechanical
resonances. The resonant frequency number is indi-
cated in the figure field next to the corresponding
curve. For the above 𝑘-parameter value, the following
values of the equation roots (18) correspond to the
resonant frequencies: 𝑥1 = 2, 063690; 𝑥2 = 5, 393958
and 𝑥3 = 8, 574693. The electric potential is 𝑈0 = 1 V.
We have plotted the values of the dimensionless radial
coordinate 𝜌/𝑅 along the abscissa axis in Figure 2.

Noteworthy is the extremely rapid decrease in
the levels of radial displacements where the order
of electromechanical resonance increases. This fact is
further illustrated by Figure 3, which shows the change

in the radial displacement modulus 𝑢
(𝑧)
𝜌 (𝑅) of the

piezoceramic disk lateral surface 𝜌 = 𝑅 in a wi-
de frequency range. The calculations were performed
based on the above set of geometric, physical and
mechanical parameters of the oscillating disk. The
numbers in the figure field indicate the numbers of

electromechanical resonances. Along the abscissa axis
in Figure 3, the dimensionless wave number 𝑥 = 𝜆𝑅
is plotted. From the calculation results presented in
Figure 3, it follows that at frequencies in the vici-
nity of the first thickness resonance (approximately
corresponding to the values 𝜆𝑅 ∼= 40 ÷ 60), the
radial displacements of the disc’s material particles,
being calculated under the assumption that 𝜎𝑧𝑧 = 0,
cease to exist.

Fig. 2. Radial displacements of the piezoceramic disk
material particles at the frequencies of the first three

electromechanical resonancese

Fig. 3. Radial displacements of the piezoceramic disk’s
lateral surface in a wide frequency range

Figure 4 demonstrates the change in the electrical
impedance modulus of a piezoceramic disk in the mid-
frequency range (Fig. 4а). The inset in Figure 4a shows
the change in 𝑍𝑒𝑙 (𝜔) modulus values in the immedi-
ate vicinity of the first electromechanical resonance
frequency 𝜔𝑟1. Figure 4b reflects the change in the
electrical impedance modulus in the vicinity of the
of the first electromechanical antiresonance frequency
𝜔𝑎1. The disk’s geometric and physical mechanical
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parameters serving as a base for calculations accord-
ing to formula (16), are indicated in the comments to
Figure 3.

Formula (19) implies that expressions (16) and (17)
are functions of a small parameter 𝜖 = 1/𝑄. Expanding
the function 𝑍𝑒𝑙 (𝜔) into a power series in a small
parameter 𝜖, and limiting the expansion to the first
power of this parameter, we obtain the following esti-
mate of the piezoceramic mechanical quality factor
[17]:

𝑄 =
𝑅
[︀(︀
𝑥2
𝑚 + 𝑘 − 1

)︀
𝐽1 (𝑥𝑚)− 𝑘 𝐽0 (𝑥𝑚)

]︀
4𝑥𝑚𝑣𝐶*

𝜕 (0) 𝐾
2
31𝐽1 (𝑥𝑚)𝑍𝑒𝑙 (𝑥𝑚)

, (20)

where 𝑥𝑚 is the 𝑚-th root of the equation (18);
𝑣 =

√︀
Re 𝑐11/𝜌0 is the propagation speed of radial

vibrations in piezoceramics, determined ignoring the
losses caused by viscous friction; 𝐶*

𝜕 (0) is the dynamic
electrical capacitance of an oscillating disk determi-
ned through the dielectric constant Re 𝜒*

33 ignoring
the losses caused by viscous friction; 𝑍𝑒𝑙 (𝑥𝑚) is the
electrical impedance of the disk at the 𝑚-th frequency
of electromechanical resonance. Note that 𝑍𝑒𝑙 (𝑥𝑚) is
a real value. From the inset in Figure 4a 𝑍𝑒𝑙 (𝑥1) =
7, 8Ohms is determined. Substituting this quantity
into formula (20) produces value 𝑄 = 100, 096. The
value 𝑄 = 100 was included in the calculation,
i.e., the resulting estimate is in good agreement with
the true value of the mechanical quality factor, and
the discrepancy between theoretically obtained data
and experimentally determined results was less than
10−3%.

Fig. 4. Module of electrical impedance of the disk in
the mid-frequency range

Several studies attempt to determine the mechani-
cal quality factor with the ratio 𝜔𝑎1/∆𝜔0 , 707 , where
𝜔𝑎1 is the angular frequency of the first electromagnetic
resonance; ∆𝜔0 , 707 is the frequency range at the level
of –3 dB from the modulus value 𝑍𝑒𝑙 (𝜔𝑎1), i. е., maxi-
mum value of electrical impedance at the frequency
of the first antiresonance. Performing the calculations
according to the graph shown in Figure 4b produces
𝑄 = 153, 3 value that differs significantly from the 𝑄 =
100 value included in the calculation. This discrepancy

is linked to the electromechanical anti-resonance which
appears as a consequence of the interaction (mutual
compensation) of the electric charge, which is induced
by the electric potential difference generator on the
electrode coating of the disk, and the polarization
charge, which emerges as a result of the piezoelectric
deformation. In other words, unlike electromechanical
resonance, viscous friction losses are by no means the
only factor determining the magnitude of the electrical
impedance.

Figure 5 demonstrates the frequency-dependent
change occurring in the modulus of the dimensi-
onless function 𝐹 (*) (𝜔), which is defined by expression
(17). This calculation was performed for the same
set of geometric, physical, and mechanical parameters
included into the calculations presented by Figure 3
and Figure 4. The inset in the Figure 5 field shows
the change in the 𝐹 (*) (𝜔) function modulus within the
range of dimensionless wave numbers 3 ≤ 𝜆𝑅 ≤ 5
or, equally, dimensionless frequencies 3 ≤ 𝜔𝜏0 ≤ 5
(𝜏0 = 𝑅/𝑣 ), where

⃒⃒
𝐹 (*) (𝜔)

⃒⃒
≈ 1. With 𝜆*𝑅 =

𝜔*𝜏0 = 3, 83 values, the 𝐹 (*) (𝜔) function modulus
is equal to unity and the electrical impedance is defi-
ned as |𝑍𝑒𝑙 (𝜔

*)| = 1/𝜔* |𝐶*
𝜕 | . Known |𝑍𝑒𝑙 (𝜔

*)|
value enables us to determine the modulus of dynamic
electrical capacitance in the mode of planar oscillations
of the piezoceramic disk, and, as a result, to obtain
an estimate of the dielectric constant modulus 𝜒*

33.
Since while performing measurements of 𝜔* frequency
at which

⃒⃒
𝐹 (*) (𝜔*)

⃒⃒
= 1 is a priori unknown, its value,

to a first approximation, can be estimated as follows:
𝜔* ∼= (𝜔𝑟 + 𝜔𝑎)/2 , where 𝜔𝑟 = (𝜔𝑟1 + 𝜔𝑟2)/2 and
𝜔𝑎 = (𝜔𝑎1 + 𝜔𝑎2)/2 .

Fig. 5. Frequency-dependent alteration in the modulus
of function 𝐹 (*) (𝜔)

Conclusions

The study offers a mathematical model developed
for disc piezoelectric transducers made of piezocera-
mics. The model makes it possible to estimate the
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electrical impedance of the disk transducers studied
here and their quasi-static electrical capacity in the
mid-frequency range depending on their geometrical
and physical-mechanical parameters.

The study has shown that a piezoceramic disc
operating in the medium frequency range, i.e., when
the elastic wavelength becomes commensurate with the
radius of the piezoceramic disk, attains electromechani-
cal anti-resonance at a 𝜔𝑎𝑚 frequency, when its electri-
cal impedance is 𝑍𝑒𝑙 (𝜔𝑎𝑚) → ∞. The specific
property of this state is that under these conditions,
the polarization charges completely compensate the
electric charge, hence the electric current vanishes and
energy consumption from the generator drops to zero.

The calculations have proved that at frequencies in
the vicinity of the first thickness resonance (approxi-
mately corresponding to the wave number values in
the range of 40-60), the radial displacements of the
material particles of the disc cease to exist under the
𝜎𝑧𝑧 = 0 condition. At the same time, the research has
revealed an extremely rapid decrease in the radial shift
levels as the number of electromechanical resonances
increases.

The estimate of the mechanical quality factor of
piezoceramic disk elements, obtained after calculat-
ing the mathematical model, highly correlates with
the real values of the mechanical quality factor. The
established fact was confirmed by a high degree of
agreement between theoretically obtained data and
experimentally determined results (the discrepancy
was less than 10−3%).

The data presented in this paper have been
obtained as implementation of the experimental sci-
entific and technical project titled “Development
of an automated ultrasonic system for extract-
ing plant raw materials to produce multi-nutrient
functional drinks for rehabilitation and preventing
post-traumatic stress disorders” (national registrati-
on number: 0124U000713, 2024-2025), which is being
carried out at the Cherkasy State Technological Uni-
versity.
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У данiй статтi представлено подальше дослiдження
з математичного моделювання електричного iмпедан-
су п’єзокерамiчного диска в широкому спектрi частот,
з особливою увагою до середньочастотного дiапазону,
тобто коли довжина пружної хвилi стає спiвмiрною
з радiусом п’єзокерамiчного диска, який є важливим
для численних сучасних застосувань. Розроблена мате-
матична модель для п’єзоелектричних перетворювачiв
дискової форми з п’єзокерамiки, що дозволяє оцiнити
їх електричний iмпеданс та квазiстатичну електричну
ємнiсть в середньочастотнiй областi, залежно вiд гео-
метричних та фiзико-механiчних характеристик таких
перетворювачiв. Встановлено, що п’єзокерамiчний диск
у середньочастотнiй областi досягає стану електромеха-
нiчного антирезонансу на частотi, на якiй його електри-
чний iмпеданс прямує до нескiнченостi. Це вiдбувається
через повну компенсацiю поляризацiйних зарядiв еле-

ктричним зарядом, що призводить до зникнення еле-
ктричного струму та вiдсутностi споживання енергiї
вiд генератора. Розрахунки показали, що на частотах
поблизу першого товщинного резонансу (вiдповiдає без-
розмiрному хвильовому числу вiд 40 до 60), радiаль-
нi змiщення матерiальних частинок диска зникають.
Вiдзначено дуже швидке зменшення рiвнiв радiаль-
них зсувiв зi збiльшенням номера електромеханiчного
резонансу. При цьому, оцiнка механiчної добротностi
п’єзокерамiчних дискових елементiв, отримана за допо-
могою математичної моделi, тiсно корелює з реальними
значеннями, що пiдтверджено високою збiжнiстю мiж
теоретичними та експериментальними результатами.

Ключовi слова: п’єзоелектричний перетворювач;
акустоелектронiка; математичне моделювання; iмпе-
данс; дисковий елемент
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