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This paper discusses the results of mathematical modelling the electrical impedance of a piezoceramic disk
oscillating in a wide range of high frequencies. The study aimed to create a mathematical model that would
incorporate geometric, physical, and mechanical characteristics of the material to assess the behavior of the
disk under conditions of electromechanical resonance and antiresonance. The research particularly focused
on the influence of radial and axial displacements of material particles on the frequency dependence of the
mechanical quality factor and electrical impedance of the disk. Even more closely, this research scrutinizes
specific effects characteristic of the high-frequency mode, in order to increase the accuracy of modeling and
ensure optimal technical characteristics of the devices. The mathematical model developed in this paper
serves as a tool to obtain estimates for the frequency dependence of the mechanical quality factor and the
dynamic electrical capacitance in real conditions, in particular, by including energy losses due to viscous
friction into the calculations. Numerical calculations confirm the high correlation between theoretical and
experimental data (with the discrepancy lower than 3 · 10−3 ), which proves the model usable for designing
piezoelectric devices. In particular, it was found that the frequencies of electromechanical resonance and
antiresonance are virtually independent of the radial displacements of material particles and are determined
by the axial components solely. In addition, the calculation model provides the ability to assess the electrical
impedance in the high-frequency range with an accuracy that meets modern requirements for the design
of functional piezoelectric devices. The results obtained have practical significance for developing precision
elements for military equipment, high-precision sensors, ultrasonic generators, medical diagnostic devices,
and other technological systems that function with piezoelectric materials.
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Introduction

Mathematical modeling of the electrical impedance
of piezoceramic disks operating in a wide frequency
range is an increasingly important area in today’s
scientific research, being widely applied in modern
technology, in particular, in high-frequency modes.
Piezoceramic disks are key elements in ultrasonic
industrial devices, military equipment, sensors,
actuators, medical ultrasound devices, as well as
in non-destructive material testing systems [1].
Nonetheless, piezoceramic elements operating in high
frequencies require a deeper insight into their
electromechanical properties, which allows for the
effective development of devices with high precision
and stable operation.

Mathematical modeling, the results of which are
considered in this article, is fast becoming a key

instrument in meeting the increasing requirements for
the accuracy of modeling and calculating the electri-
cal impedance. The efficiency of devices based on
piezoelectric ceramic elements relies greatly on the
results of mathematical modeling, which makes the
studies in this field urgent and relevant. Failure to
consider high-frequency effects can lead to design
errors, reduced sensor sensitivity, or even device fai-
lure [2]. For instance, in high-frequency oscillation
modes, complex electromechanical interactions arise
that cannot be described without detailed mathemati-
cal analysis.

The research problem that we attempt to solve by
this study includes nonlinearities and specific effects
that arise in piezoceramic disks at high frequencies.
Not only does this approach allow us to predict system
behavior, but to optimize device design as well. Recent
developments [3, 4] claim that accurate mathemati-
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cal modeling of electrical impedance shortens the
development cycle, improves the product quality, and
reduces testing costs.

Therefore, mathematical modeling of the electrical
impedance of a piezoceramic disk oscillating in a wi-
de range of high frequencies may be applied to solve
important applied problems, including determining the
optimal design parameters of piezoceramic disks, predi-
cting their resource, and increasing operating efficiency
in a wide range of frequencies.

1 Topicality of the research

based on the literature review

Mathematical modeling of electrical impedance in
the high ultrasound frequency range is a narrow fi-
eld of research that combines aspects of bioelectrical
impedance tomography and ultrasound diagnostics.
Today, a large and growing cohort of investigators
are engaged in solving the problems of mathematical
modeling of electrical impedance. In the pages that
follow, we will review several most prominent and
relevant studies in this field.

A study of particular interest is by Habib Ammari,
Professor of Applied Mathematics [5], whose research
delves into mathematical analysis and numerical
methods for ultrasound-induced electrical conductivity
tomography.

Pol Grasland-Mongrain [6], whose area of interest
lies in the field of biomedical engineering, collaborates
with Habib Ammari on mathematical models for appli-
ed issues of ultrasound-induced electrical conductivity
tomography.

Research by Bastian Gebauer and Otmar Scherzer
[7] has presented a hybrid imaging technique
that combines electrical impedance tomographywith
acoustic tomography. This approach exploits the
phenomenon in which the electrical energy absorbed
within a body increases its temperature, leading to
thermal expansion that in its turn generates acoustic
waves. By analyzing these acoustic signals, researchers
are able to determine the internal distribution of
absorbed electrical energy, and therefore the body’s
electrical conductivity. This method aims to combine
the high contrast of electrical impedance tomography
with the high spatial resolution of ultrasound imaging.

In Ukraine, mathematical modeling of the electri-
cal impedance of piezoceramic disks is the topic that
is being actively explored by a number of research
teams. In particular, at the National Technical Uni-
versity of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute,” which is one of the leading research centers
in this field, a team of scientists led by Professor
Yuriy Poplavko is developing innovative modeling and
analysis methods that investigate, among other issues,
piezoceramic disks [8].

G. E. Pukhov Institute for Modelling in Energy
Engineering and I.M. Frantsevych Institute for
Problems in Materials Science (National Academy of
Sciences of Ukraine) are another prominent research
centers of Ukraine that conducts fundamental research
into the properties of piezoceramic materials and
searches for innovative approaches to their mathemati-
cal modeling. For instance, a school of academics led
by Professor Halyna Oleynyk, is developing theoreti-
cal and practical solutions for the use of ceramic
piezomaterials in various devices [9].

As recent literature in the field suggests,
mathematical modeling of the electrical impedance
of piezoceramic disks is a subject of intensive and
extensive research both in the international and Ukrai-
nian academic community. The results to be obtained
guarantee and foster scientific achievements in radio
engineering, instrument making, medical technologies
and other areas where accurate and reliable methods
of analyzing and controlling piezoelectric materials are
critically relevant.

In view of the above, mathematical modeling of the
electrical impedance of a piezoceramic disk in the high-
frequency range is an extremely relevant and promising
topic, given the ongoing technological progress and
the growing demand for high-precision instruments for
various industries.

The purpose of the article is to develop a
mathematical model of the electrical impedance of
a piezoceramic disk oscillating in the high-frequency
range for an accurate analysis of its electromechanical
behavior.

2 Mathematical modeling of a pi-

ezoceramic disk transducer in

the high-frequency range

Let us consider a disk with radius R which exceeds
significantly its thickness 𝛼. The disk is located in a
cylindrical coordinate system, where the coordinates
(𝜌, 𝜑, z) determine its position, Fig. 1. The starting po-
int of this coordinate system coincides with the center
of the lower surface of the disk. The surfaces of the
disk at heights z = 0 and z = 𝛼 are electrodes. In
this case, the piezoelectric disk is made of ceramics
of the “lead zirconate-titanate” class with thickness
𝛼. The disk surfaces are covered with a thin layer of
silver (up to 0.01 mm) by thermal vacuum deposi-
tion technology [10]. The lower surface of the disk
(z = 0) has zero potential, i.e., it is grounded, and
an electric potential 𝑈0𝑒

𝑖𝜔𝑡 is applied to the upper
surface z = 𝛼 under the condition of ensuring the
electric field strength 𝑈0/𝛼 ≪ 0, 1𝐸0 in the polarizing
material of the disk, where U0 is the amplitude value
of the electric potential; 𝑖 =

√
−1 is an imaginary unit,

𝜔 denotes angular frequency of sign inversion in the
potential, t is duration of an oscillation cycle. The value
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of such a potential is selected under the condition that
guarantees the absence of nonlinear effects.

Fig. 1. Calculation model of a piezoceramic disk osci-
llating in a high-frequency range

Within the high-frequency range, where the elastic
wavelength becomes commensurate with the thickness
of the disk, the displacement vector of material parti-
cles has both radial and axial components. The electri-
cal impedance of the oscillating piezoceramic disk will
be determined as discussed in [11,12].

Radial component 𝑢
(𝑧)
𝜌 (𝜌) of the material particles’

displacement vector, averaged over the disk thickness,

must satisfy equation [12]. Axial component 𝑢
(𝜌)
𝑧 (𝑧),

averaged over the electrode surface area, must satisfy
the equation

𝜕 𝜎
(𝜌)
𝑧𝑧 (𝑧)

𝜕 𝑧
+ 𝜌0𝜔

2𝑢(𝜌)
𝑧 (𝑧) = 0, (1)

which is obtained from the equation of steady axial
oscillations after applying the averaging procedure to

it [12]. Symbol 𝜎
(𝜌)
𝑧𝑧 (𝑧) in equation (1) denotes normal

stress 𝜎𝑧𝑧(𝜌, 𝑧), averaged over the area of the electrode-
coated surface of the disk, i.e.

𝜎(𝜌)
𝑧𝑧 (𝑧) =

2

𝑅2

𝑅∫︁
0

𝜌 𝜎𝑧𝑧 (𝜌, 𝑧) 𝑑𝜌. (2)

Normal stresses 𝜎
(𝑧)
𝜌𝜌 (𝜌), 𝜎

(𝑧)
𝜑𝜑 (𝜌) and 𝜎

(𝜌)
𝑧𝑧 (𝑧) are

obtained by appropriately averaging the following
expressions:

𝜎𝜌𝜌 (𝜌, 𝑧) = 𝑐𝐸11
𝜕 𝑢𝜌 (𝜌, 𝑧)

𝜕 𝜌
+ 𝑐𝐸12

𝑢𝜌 (𝜌, 𝑧)

𝜌
+

+ 𝑐𝐸12
𝜕 𝑢𝑧 (𝜌, 𝑧)

𝜕 𝑧
− 𝑒31𝐸𝑧 (𝜌, 𝑧) , (3)

𝜎𝜑𝜑 (𝜌, 𝑧) = 𝑐𝐸12
𝜕 𝑢𝜌 (𝜌, 𝑧)

𝜕 𝜌
+ 𝑐𝐸11

𝑢𝜌 (𝜌, 𝑧)

𝜌
+

+ 𝑐𝐸12
𝜕 𝑢𝑧 (𝜌, 𝑧)

𝜕 𝑧
− 𝑒31𝐸𝑧 (𝜌, 𝑧) , (4)

𝜎𝑧𝑧 (𝜌, 𝑧) = 𝑐𝐸12
1

𝜌

𝜕

𝜕 𝜌
[𝜌 𝑢𝜌 (𝜌, 𝑧)] +

+ 𝑐𝐸33
𝜕 𝑢𝑧 (𝜌, 𝑧)

𝜕 𝑧
− 𝑒33𝐸𝑧 (𝜌, 𝑧) . (5)

Axial component 𝐷𝑧 (𝜌) of the electrical induction
vector has the following notation

𝐷𝑧 (𝜌) = 𝑒31
1

𝜌

𝜕

𝜕 𝜌
[𝜌 𝑢𝜌 (𝜌, 𝑧)] +

+ 𝑒33
𝜕 𝑢𝑧 (𝜌 , 𝑧)

𝜕 𝑧
+ 𝜒𝜀

33𝐸𝑧 (𝜌, 𝑧) . (6)

From condition 𝜕 𝐷𝑧 (𝜌)/𝜕 𝑧 = 0, there follows
representation of the 𝐷𝑧 (𝜌) component which is physi-
cally equivalent to expression (6)

𝐷𝑧 (𝜌) = 𝑒31
1

𝜌

𝜕

𝜕 𝜌

[︁
𝜌 𝑢(𝑧)

𝜌 (𝜌)
]︁
+

+
𝑒33
𝛼

[𝑢𝑧 (𝜌 , 𝛼)− 𝑢𝑧 (𝜌 , 0)]− 𝜒𝜀
33

𝑈0

𝛼
. (7)

Subtracting relation (7) from expression (6), we
obtain

𝑒31
𝜌

𝜕

𝜕 𝜌

{︁
𝜌
[︁
𝑢𝜌 (𝜌 , 𝑧)− 𝑢(𝑧)

𝜌 (𝜌)
]︁}︁

+

+ 𝑒33

{︂
𝜕 𝑢𝑧 (𝜌 , 𝑧)

𝜕 𝑧
− 1

𝛼
[𝑢𝑧 (𝜌 , 𝛼)− 𝑢𝑧 (𝜌 , 0)]

}︂
+

+ 𝜒𝜀
33

[︂
𝐸𝑧 (𝜌 , 𝑧) +

𝑈0

𝛼

]︂
= 0. (8)

Averaging expression (8) over the disk thickness
gives us

𝐸(𝑧)
𝑧 (𝜌) = −𝑈0/𝛼 . (9)

The averaging procedure (2) over expression (8)
brings us to the conclusion that in the case of a

thin disk, when 𝑢𝜌 (𝑅 , 𝑧) − 𝑢
(𝑧)
𝜌 (𝑅) ∼= 0, the axial

component of the electric field strength vector averaged
over the area of the electroded surface takes the follow-
ing form

𝐸(𝜌)
𝑧 (𝑧) = −𝑈0

𝛼
−

− 𝑒33
𝜒𝜀
33

{︃
𝜕 𝑢

(𝜌)
𝑧 (𝑧)

𝜕 𝑧
− 1

𝛼

[︁
𝑢(𝜌)
𝑧 (𝛼)− 𝑢(𝜌)

𝑧 (0)
]︁}︃

. (10)

By averaging expressions (3) and (4) over the thi-
ckness of the disk, and considering definition (9), we
obtain

𝜎(𝑧)
𝜌𝜌 (𝜌) = 𝑐𝐸11

𝜕 𝑢
(𝑧)
𝜌 (𝜌)

𝜕 𝜌
+ 𝑐𝐸12

𝑢
(𝑧)
𝜌 (𝜌)

𝜌
+

+
𝑐𝐸12
𝛼

[𝑢𝑧 (𝜌 , 𝛼)− 𝑢𝑧 (𝜌 , 0)] +
𝑒31
𝛼

𝑈0, (11)

𝜎
(𝑧)
𝜑𝜑 (𝜌) = 𝑐𝐸12

𝜕 𝑢
(𝑧)
𝜌 (𝜌)

𝜕 𝜌
+ 𝑐𝐸11

𝑢
(𝑧)
𝜌 (𝜌)

𝜌
+

+
𝑐𝐸12
𝛼

[𝑢𝑧 (𝜌 , 𝛼)− 𝑢𝑧 (𝜌 , 0)] +
𝑒31
𝛼

𝑈0. (12)
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The following estimate is valid for a thin disk:

𝑢𝑧 (𝜌 , 𝛼) − 𝑢𝑧 (𝜌 , 0) ∼= 𝑢
(𝜌)
𝑧 (𝛼) − 𝑢

(𝜌)
𝑧 (0) . Taking this

fact into account, we get the following result:

𝜌2
𝜕2𝑢

(𝑧)
𝜌 (𝜌)

𝜕 𝜌2
+ 𝜌

𝜕 𝑢
(𝑧)
𝜌 (𝜌)

𝜕 𝜌
+

+
[︁(︀
𝜆𝐸𝑅

)︀2 − 1
]︁
𝑢(𝑧)
𝜌 (𝜌) = 0, (13)

where 𝜆𝐸 = 𝜔/
√︀
𝑐𝐸11/𝜌0 is the wave number of

the piezoceramic disk’s radial vibrations in the high
frequency range, when 𝜎𝑧𝑧 (𝜌 , 𝑧) ̸= 0. The solution to
equation (13) is obvious

𝑢(𝑧)
𝜌 (𝜌) = 𝐶 𝐽1

(︀
𝜆𝐸𝜌

)︀
, (14)

where C denotes the frequency dependent constant to
be determined.

Subjecting relation (5) to the averaging operation
(2), and assuming at the same time that the estimate

𝑢𝜌 (𝑅 , 𝑧) ∼= 𝑢
(𝑧)
𝜌 (𝑅) is valid for a thin disc, we arrive

to the following result

𝜎(𝜌)
𝑧𝑧 (𝑧) ∼=

2𝑐𝐸12
𝑅

𝑢(𝑧)
𝜌 (𝑅) + 𝑐𝐷33

𝜕 𝑢
(𝜌)
𝑧 (𝑧)

𝜕 𝑧
−

− 𝑒233
𝜒𝜀
33𝛼

[︁
𝑢(𝜌)
𝑧 (𝛼)− 𝑢(𝜌)

𝑧 (0)
]︁
+

𝑒33
𝛼

𝑈0, (15)

where 𝑐𝐷33 = 𝑐𝐸33
(︀
1 +𝐾2

33

)︀
; 𝐾2

33 = 𝑒233/
(︀
𝜒𝜀
33𝑐

𝐸
33

)︀
is square electromechanical coupling coefficient for
the thickness vibration mode of a piezoceramic plate
polarized over the thickness.

Substituting expression (15) into equation (1), we
reduce it to the following form:

𝜕2𝑢
(𝜌)
𝑧 (𝑧)

𝜕 𝑧2
+ 𝛾2𝑢(𝜌)

𝑧 (𝑧) = 0, (16)

where 𝛾 = 𝜔/
√︀
𝑐𝐷33/𝜌0 is wave number of axial

(thickness) vibrations of the piezoceramic disk. The
solution to equation (16) is as follows:

𝑢(𝜌)
𝑧 (𝑧) = 𝐴 cos 𝛾𝑧 +𝐵 sin 𝛾𝑧, (17)

where A and B are frequency dependent constants to
be determined. A, B and C constants are determined
from the boundary conditions

𝜎(𝑧)
𝜌𝜌 (𝑅) ∼=

[︃
𝑐𝐸11

𝜕 𝑢
(𝑧)
𝜌 (𝜌)

𝜕 𝜌
+ 𝑐𝐸12

𝑢
(𝑧)
𝜌 (𝜌)

𝜌

]︃⃒⃒⃒⃒
⃒
𝜌=𝑅

+

+
𝑐𝐸12
𝛼

[︁
𝑢(𝜌)
𝑧 (𝛼)− 𝑢(𝜌)

𝑧 (0)
]︁
+

𝑒31
𝛼

𝑈0 = 0, (18)

𝜎(𝜌)
𝑧𝑧 (𝑧)

⃒⃒⃒
𝑧=𝛼 ; 0

= 0, (19)

where relation (15) defines normal stress 𝜎
(𝜌)
𝑧𝑧 (𝑧) .

Substituting solutions (14) and (17) into conditions
(18) and (19) brings us to the following system of linear
algebraic equations:

𝐴𝑚11 +𝐵𝑚12 + 𝐶𝑚13 = −𝑒31𝑈0

𝑐𝐸12
𝑝1,

𝐴𝑚21 +𝐵𝑚22 + 𝐶𝑚23 = −𝑒31𝑈0

𝑐𝐸12
𝑝2,

𝐴𝑚31 +𝐵𝑚32 + 𝐶𝑚33 = −𝑒31𝑈0

𝑐𝐸12
𝑝3,

(20)

where 𝑚11 = − 1−cos 𝛾𝛼
𝛾𝛼 ; 𝑚12 = sin 𝛾𝛼

𝛾𝛼 ;

𝑚13 = 𝜉1

[︁
𝐽0 (𝜉3𝛾𝛼)− 1−𝑘𝐸

𝜉3𝛾𝛼
𝐽1 (𝜉3𝛾𝛼)

]︁
;

𝜉1 =

√
𝑐𝐸11𝑐

𝐷
33

𝑐𝐸12
; 𝜉3 = 𝑅

𝛼

√︂
𝑐𝐷33
𝑐𝐸11

; 𝑝1 = 1; 𝑝2 =
𝑒33𝑐

𝐸
12

𝑒31𝑐𝐷33
;

𝑚21 =
𝐾2

33

1+𝐾2
33

(1−cos 𝛾𝛼)
𝛾𝛼 − sin 𝛾𝛼;

𝑚22 = − 𝐾2
33

1+𝐾2
33

sin 𝛾𝛼
𝛾𝛼 + cos 𝛾𝛼; 𝑚23 =

2𝑐𝐸12𝛼

𝑐𝐷33𝑅

𝐽1(𝜉3𝛾𝛼)
𝛾𝛼 ;

𝑚31 =
𝐾2

33

1+𝐾2
33

(1−cos 𝛾𝛼)
𝛾𝛼 ; 𝑚32 = − 𝐾2

33

1+𝐾2
33

sin 𝛾𝛼
𝛾𝛼 + 1;

𝑚33 = 𝑚23; 𝑝3 = 𝑝2.
The solutions to the system of equations (20) can

be written in the following form:

𝐴 = − 𝑒31𝑈0

𝛾𝛼𝑐𝐸12

Δ(𝐴)
Δ0

, 𝐵 = − 𝑒31𝑈0

𝛾𝛼𝑐𝐸12

Δ(𝐵)
Δ0

, 𝐶 = − 𝑒31𝑈0

𝛾𝛼𝑐𝐸12

Δ(𝐶)
Δ0

,

where ∆(𝐴) , ∆(𝐵) , ∆(𝐶) and ∆0 are determinants
of the following matrices:

∆(𝐴) = det

⃦⃦⃦⃦
⃦⃦𝑝1 𝑚12 𝑚13

𝑝2 𝑚22 𝑚23

𝑝3 𝑚32 𝑚33

⃦⃦⃦⃦
⃦⃦ ;

∆ (𝐵) = det

⃦⃦⃦⃦
⃦⃦𝑚11 𝑝1 𝑚13

𝑚21 𝑝2 𝑚23

𝑚31 𝑝3 𝑚33

⃦⃦⃦⃦
⃦⃦ ;

∆ (𝐶) = det

⃦⃦⃦⃦
⃦⃦𝑚11 𝑚12 𝑝1
𝑚21 𝑚22 𝑝2
𝑚31 𝑚32 𝑝3

⃦⃦⃦⃦
⃦⃦ ;

∆0 = det

⃦⃦⃦⃦
⃦⃦𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

⃦⃦⃦⃦
⃦⃦ .

Having defined A, B and C constants, we can wri-

te the averaged displacements 𝑢
(𝑧)
𝜌 (𝑅) , 𝑢

(𝜌)
𝑧 (𝛼) and

𝑢
(𝜌)
𝑧 (0) in an explicit form and define an expression for

the Ξ𝜀 (𝜔) function [12] in an explicit form

Ξ𝜀 (𝜔) =
𝑈0

∆0
𝐹 𝜀 (𝜔 , Π) ,

where 𝐹 𝜀 (𝜔 , Π) is a function depending on the
frequency and geometric and physical-mechanical
parameters of the disk (Π symbol in the list of function
arguments), the numerical values of which are given by
the formula

𝐹 𝜀 (𝜔 , Π) =
2𝑒231𝛼

𝜒𝜀
33𝑐

𝐸
12𝑅

∆(𝐶)
𝐽1

(︀
𝜆𝐸𝑅

)︀
𝛾𝛼

+

+
𝑒33𝑒31
𝜒𝜀
33𝑐

𝐸
12

[︂
−∆(𝐴)

(1− cos 𝛾𝛼)

𝛾𝛼
+∆(𝐵)

sin 𝛾𝛼

𝛾𝛼

]︂
+1.
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In this case, the desired electrical impedance of the
piezoceramic disk in the high-frequency range is given
by the following expression

𝑍𝑒𝑙 (𝜔) =
𝑈0

−𝑖𝜔𝐶𝜀
𝑑Ξ

𝜀 (𝜔)
=

∆0

−𝑖𝜔𝐶𝜀
𝑑𝐹

𝜀 (𝜔 , Π)
, (21)

where 𝐶𝜀
𝑑 = 𝜋𝑅2𝜒𝜀

33/𝛼 is the dynamic electrical
capacitance of a piezoceramic disk at high frequencies.

In other words, at the electromechanical anti-
resonance frequencies 𝜔𝑎, under the condition of zero
energy losses due to viscous friction in the material of
the piezoceramic disk, its electrical impedance 𝑍𝑒𝑙 (𝜔)
increases indefinitely, which eliminates the electric
current in the circuit and corresponds to the conditions
of an open electrical circuit.

Thus, in the high-frequency range, quite simi-
lar to the conditions observed in the medium-
frequency range, it is possible to calculate the
frequency dependence of the mechanical quality
factor in both medium and high-frequency ranges by
including mechanical quality factors and end-to-end
electromechanical resonances into the calculations.

3 Discussion of the modelling

results

In a real experiment, there are no zeros or infinities,
since in real elastic materials there are always viscous
friction losses. These losses can be calculated through
parameter 𝑄𝑚, which has the meaning of the mechani-
cal quality factor of the material. The Q-factor is a
dimensionless number, the value of which is inversely
proportional to the energy losses in the oscillatory
system per period. In ideal elastic bodies, where vi-
scous friction entails no energy loss, 𝑄𝑚 → ∞. In real
objects, the 𝑄𝑚 quality factor has a finite value. Thus,
the elasticity moduli 𝑐𝐸𝛽𝜆 (𝑄𝑚) read as follows [13]

𝑐𝐸𝛽𝜆 (𝑄𝑚) = 𝑐𝐸𝛽𝜆 (1 + 𝑖/𝑄𝑚 ) , (22)

where 𝑐𝐸𝛽𝜆 is the static modulus of elasticity; 𝑖 =
√
−1

is unit imaginary number.
Figure 2 presents the calculations for the modulus

of the electrical impedance of the disk, which have been
performed according to formula (21) with the following
fixed parameter set: 𝑐𝐸11 = 110𝐺𝑃𝑎; 𝑐𝐸12 = 60𝐺𝑃𝑎;
𝑐𝐸33 = 100𝐺𝑃𝑎; 𝑒33 = 18𝐶/𝑚2 ; 𝑒31 = −8𝐶/𝑚2

and 𝜒𝜀
33 = 1400𝜒0; 𝜒0 = 8, 85 · 10−12 𝐹/𝑚 is

dielectric constant; mechanical quality factor of the pi-
ezoceramics is 𝑄𝑚 = 100; piezoceramic density is 𝜌0 =
7400 𝑘𝑔/𝑚3 . The thickness of the disc is 𝛼 = 3·10−3 𝑚.
Ratio 𝑅/𝛼 , which was set equal to 100; 50; 25; 12,5
and 6,25, is the varying parameter of the family of
curves shown in Fig. 2. Numerical 𝑅/𝛼 ratio values are
indicated in the figure field next to the corresponding
curves. The values of the electrical impedance modulus
𝑍𝑒𝑙 (𝜔) normalized to the magnitude of the modulus

𝑍𝑒𝑙 (𝜔𝑎) at the thickness antiresonance frequency 𝜔𝑎

are plotted along the ordinate axis in Fig. 2. The di-
mensionless wave number 𝛾𝛼 is measured along the
abscissa axis. With the disk parameter values speci-
fied above, the 𝛾𝛼 = 1 value corresponds to the
cyclic frequency 𝑓 = 𝑣𝐷/(2𝜋𝛼) = 219, 1 𝑘𝐻𝑧, where

𝑣𝐷 =
√︀
𝑐𝐷33/𝜌0 = 4130𝑚/𝑠 is the propagation speed

of plane compression-tension waves along the electric
polarization of the disk.

Fig. 2. Frequency-dependent change in the modulus
of the electrical impedance of a piezoceramic disk in
the vicinity of the first electromechanical resonance-

antiresonance frequency through thickness

From the results shown in Fig. 2, it follows that
with a significant change in the 𝑅/𝛼 ratio, the value of
the dimensionless frequency of the first electromechani-
cal antiresonance through thickness remains virtually
unchanged. This is confirmed by the constructions
shown in Fig. 3, where we have presented the calculati-
ons for expression |𝑍𝑒𝑙 (𝜔)|/|𝑍𝑒𝑙 (𝜔𝑎)| in the immediate
vicinity of the antiresonance frequency. The abscissa
axis shows the values of the dimensionless frequency 𝛾𝛼
in units of 𝜋-number, that is, 𝛾𝛼/𝜋 values. It is obvious
that the maximum possible change in the dimensi-
onless frequency of electromechanical antiresonance
does not exceed 0, 02𝜋. A similar conclusion is true
for the influence of 𝑅/𝛼 on the value of the dimensi-
onless frequency of the first thickness electromechanical
resonance (Fig. 2), where 𝑍𝑒𝑙 (𝜔) module takes mini-
mum values.

From the above results, the fact derives that radi-

al displacement 𝑢
(𝑧)
𝜌 (𝑅) of the material particles has

virtually no effect on the numerical values of the
frequencies of the first electromechanical resonance
and antiresonance through the thickness. In other
words, the numerical values of the electromechanical
resonance and antiresonance frequencies are practically

completely determined by axial displacements 𝑢
(𝜌)
𝑧 (𝑧) .
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Fig. 3. Frequency-dependent change in the modulus
of the electrical impedance of a piezoceramic disk in
the vicinity of the first electromechanical antiresonance

through thickness

Taking this circumstance into account, we can
argue that in the high-frequency range, function Ξ𝜀 (𝜔)
that determines the electrical impedance of the osci-
llating disk in the specified frequency range takes the
following form

Ξ𝜀 (𝜔) ∼=
𝑒33
𝜒𝜀
33

[︁
𝑢(𝜌)
𝑧 (𝛼)− 𝑢(𝜌)

𝑧 (0)
]︁
− 𝑈0. (23)

When calculating the electrical impedance with
formula (23), we will, naturally, omit some details of the
frequency-dependent change in the function 𝑍𝑒𝑙 (𝜔).
Nonetheless, we will preserve the primary characteri-
stic, i.e., the numerical values of the frequencies of
electromechanical resonance and antiresonance.

A and B constants included into the description

of axial displacements 𝑢
(𝜌)
𝑧 (𝑧) (see expression (17))

are determined from the boundary conditions (19),

where normal stress 𝜎
(𝜌)
𝑧𝑧 (𝑧) is given by the following

expression

𝜎(𝜌)
𝑧𝑧 (𝑧) =

= 𝛾𝑐𝐷33

{︂
−𝐴

[︂
sin 𝛾𝑧 +

𝐾2
33

1 +𝐾2
33

(cos 𝛾𝛼− 1)

𝛾𝛼

]︂
+

+𝐵

[︂
cos 𝛾𝑧 − 𝐾2

33

1 +𝐾2
33

sin 𝛾𝛼

𝛾𝛼

]︂
+

𝑒33𝑈0

𝛾𝛼𝑐𝐷33

}︂
. (24)

Substituting the 𝑧 = 𝛼 and 𝑧 = 0 values into
expression (24) and equating the obtained results to
zero, we obtain a system of linear algebraic equations
from which A and B constants are determined in a
unique way

𝐴 =
𝑒33𝑈0

𝑐𝐷33

tg (𝛾𝛼/2 )

𝛾𝛼𝐹 𝜀 (𝜔 , Π)
,

𝐵 = −𝐴 · tg (𝛾𝛼/2 ) ,

(25)

where

𝐹 𝜀 (𝜔 , Π) = 1− 𝐾2
33

1 +𝐾2
33

tg (𝛾𝛼/2 )

(𝛾𝛼/2 )
. (26)

Substituting expressions (25) into definition (17)
of the axial displacements of material particles of
the piezoceramic disk allows us to determine values

𝑢
(𝜌)
𝑧 (𝛼) and 𝑢

(𝜌)
𝑧 (0) , which explicitly determine functi-

on Ξ𝜀 (𝜔) , specified by (23). After this operation,
the expression for calculating the electrical impedance
𝑍𝑒𝑙 (𝜔) takes the notation:

𝑍𝑒𝑙 (𝜔) =
1

𝑖𝜔𝐶𝜀
𝑑

𝐹 𝜀 (𝜔 , Π) . (27)

From expression (27), it follows that when 𝛾𝛼/2
tends to the 𝜋/2 value from the left, the 𝐹 𝜀 (𝜔 , Π)
function has positive values initially, then goes to zero,
which corresponds to electromechanical resonance, and
then tends to minus infinity. In the absence of energy
loss due to viscous friction in the material of the pi-
ezoceramic disk (𝑄𝑚 → ∞) at 𝛾𝛼 = 𝜋, the electrical
impedance is 𝑍𝑒𝑙 (𝜔𝑎) → ∞.

Figure 4a demonstrates the change of 𝐹 𝜀 (𝜔 , Π)
function for 𝑄𝑚 → ∞ and 𝐾2

33 = 0, 262 cases,
which corresponds to the set of physical and mechani-
cal parameters that served to calculate the curves in
Fig. 2 and Fig. 3. Figure 4b shows the modulus of a
complex-valued function 𝐹 𝜀 (𝜔 , Π) normalized to its
maximum value when the mechanical quality factor
of the disk material is 𝑄𝑚 = 100 and the dimensi-
onless wave number 𝛾𝛼 turns into a complex number
𝛾𝛼 (1− 𝑖/(2𝑄𝑚)). Comparing the curves shown in
Fig. 2 and Fig. 4b, we can conclude that a detailed
calculation of the electrical impedance of an oscillating
piezoceramic disk should be carried out by formula
(21), and the numerical values of the resonance and
antiresonance frequencies should be assessed with the
function 𝐹 𝜀 (𝜔 , Π), which is given by expression (26).

(a) (b)

Fig. 4. Frequency-dependent change in function
𝐹 𝜀 (𝜔,Π) in the absence of energy losses in the disk
material (a) and for a material with a mechanical quali-

ty factor 𝑄𝑚 = 100 (b)

As a concluding stage in investigating the electrical
impedance of a piezoceramic disk in a high-frequency
range, consider its value at the frequency of the first
electromechanical resonance.

In formula (26), the wave number 𝛾 and the square
of the electromechanical coupling coefficient 𝐾2

33
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depend on the value of the mechanical quality factor
𝑄𝑚. Along with that, 𝛾 = 𝜔/𝑣𝐷 ∼= 𝛾0 (1− 𝑖/(2𝑄𝑚))
and 𝐾2

33 = 𝑒233/
[︀
𝜒𝜀
33𝑐

𝐸
33 (1 + 𝑖/𝑄𝑚 )

]︀
, where 𝛾0 is the

wave number of axial vibrations of the disk, determined
without taking into account energy losses due to vi-
scous friction. Obviously, parameter 𝜀 = 1/(2𝑄𝑚) ≪ 1.
Developing expression (27) at the frequency of the first
electromechanical resonance as a series in powers of the
small parameter 𝜀, and limiting ourselves to the zero
and first terms of the expansion, we obtain

𝑍𝑒𝑙 (𝜔𝑝) = 𝜀
𝐾2

33Ψ(𝜔𝑟)

𝜔𝑟𝐶𝜀
𝑑 (1 +𝐾2

33)
, (28)

where 𝐾2
33 =

𝑒233
𝜒𝜀
33𝑐

𝐸
33
; Ψ (𝜔𝑟) =

2 tg(𝛾0𝛼/2 )
(1+𝐾2

33) (𝛾0𝛼/2 )
+

1+sin(𝛾0𝛼)/(𝛾0𝛼)
cos2(𝛾0𝛼/2 ) .

Figure 5 contains graphs of the electrical impedance
modulus 𝑍𝑒𝑙 (𝜔), calculated according to formula (21)
in the immediate vicinity of the first electromechanical
resonance frequency. The ordinate axis displays the
values of the 𝑍𝑒𝑙 (𝜔) function modulus in ohms, the
dimensionless frequency 𝛾𝛼 = 𝜔𝛼/𝑣𝐷 is plotted along

the abscissa axis, where 𝑣𝐷 =
√︀

𝑐𝐷33/𝜌0 denotes the
speed of plane compression-tension waves, to determi-
ne which we ignore losses in the piezoelectric. The
calculations were performed for a disk with the ratio
𝑅/𝛼 = 12, 5. The rest of the parameters are indicated
in the comments to Fig. 2. A variable parameter of
the family of curves in Fig. 5 is the mechanical quality
factor 𝑄𝑚, which was assigned the values of 60, 80, 100
and 120 units. The quality factor values are indicated
next to the corresponding curves. The graph clearly
shows that the largest 𝑄𝑚 value corresponds to the
smallest electrical impedance 𝑍𝑒𝑙 (𝜔𝑟) value which, as
follows from formula (28), has positive real values, i. е.
|𝑍𝑒𝑙 (𝜔𝑟)| ≡ 𝑍𝑒𝑙 (𝜔𝑟).

Fig. 5. Calculations of the electrical impedance
modulus of the disk in the vicinity of the first
electromechanical resonance frequency by formula (21)

Since value 𝑍𝑒𝑙 (𝜔𝑟) is measurable in a real experi-
ment, expression (28) implies an estimate of the

mechanical quality factor 𝑄𝑚 at the frequency of the
first thickness-through electromechanical resonance

𝑄𝑚 =
𝐾2

33Ψ(𝜔𝑟)

2𝑍𝑒𝑙 (𝜔𝑟)𝜔𝑟𝐶𝜀
𝑑 (1 +𝐾2

33)
. (29)

Comparing the theoretical (calculated) and experi-
mental data on the frequency dependence of the
mechanical quality factor 𝑄𝑚, it can be seen that the
discrepancy between these data did not exceed 3·10−3 .

Note that the mechanical quality factor 𝑄𝑚, found

by [12] (we will denote this quality factor with 𝑄
(𝜌)
𝑚 )

and the mechanical quality factor 𝑄
(𝑧)
𝑚 , determined

by expression (29), are unequal. Moreover, inequali-

ty 𝑄
(𝜌)
𝑚 > 𝑄

(𝑧)
𝑚 must be satisfied. Quite obviously,

this state of affairs is due to energy losses. Due to
viscous friction, energy losses increase with increasing
frequency.

It follows from the theory of Lifshitz –
Parkhomovsky – Merkulov that the damping coeffi-
cient 𝛽 of ultrasound in a wide frequency range can be
described by the expression

𝛽 ∼= 𝛿1𝑓
2 + 𝛿2𝑓

4,

where 𝛿1 and 𝛿2 are structural parameters, the numeri-
cal values of which are determined by the average size
of the grains of the material; f is the cyclic frequency.

The damping coefficient 𝛽 and the mechanical
factor 𝑄𝑚 are related, that is, in the medium frequency

range 𝛽 = 𝜆/
(︁
2𝑄

(𝜌)
𝑚

)︁
, and in the area of high

frequencies 𝛽 = 𝛾/
(︁
2𝑄

(𝑧)
𝑚

)︁
, where 𝜆 and 𝛾 are wave

numbers of radial and thickness-through oscillating
circular disks. Knowing the values of the mechanical

quality factors 𝑄
(𝜌)
𝑚 and 𝑄

(𝑧)
𝑚 at the frequencies of the

first and second radial, as well as the first and second
thickness-through electromechanical resonances, it is
possible to estimate the frequency dependence of the
mechanical quality factor both in the medium and high
frequency range. In addition, it is possible to form
an estimate of the frequency dependence of the Q-
factor in the transitional frequency range. The specified
estimates are extremely important for mathematical
modeling of functional devices of piezo electronics that
operate in a wide frequency range [14,15].

Conclusions

The purpose of the current study was to develop
a mathematical model to accurately determine the
electrical impedance of a piezoceramic disk oscillating
in a high-frequency range. The model developed in
this study incorporates both geometric and physical-
mechanical parameters of the material to evaluate
the behavior of the disk under varied conditions
of electromechanical resonance and antiresonance. In
particular, it has been found that in the antiresonance
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range, the electrical impedance increases indefinitely
under ideal conditions, which corresponds to the
absence of electric current in the circuit and is critical
when optimizing devices that operate in the high-
frequency range.

Numerical calculations showed that the frequency
dependence of the mechanical quality factor 𝑄𝑚

strongly correlates with the experimental data, ensur-
ing high modeling accuracy (for example, the di-
screpancy between the calculated and experimental
data did not exceed 3 ·10−3 ). Therefore, the developed
model is able to estimate energy losses due to vi-
scous friction, as well as anticipate behavior of the
piezoceramic material in transient modes. The second
major finding was that the developed model makes it
possible to analyze the frequency dependence of electri-
cal impedance 𝑍𝑒𝑙 (𝜔) , which is a significant factor in
designing functional piezoelectric devices.

In addition, the simulation results revealed a mi-
nimal effect of radial displacements of material parti-
cles on the resonant frequencies 𝜔𝑟, which simplifies
the procedure for their analysis. Thus, in the high-
frequency range, the main parameters of the disk are
determined by axial displacements, which unlocks the
potential for optimizing such mathematical models in
practical applications.

Thus, the findings of the present study make several
noteworthy contributions to improving mathematical
models for analyzing the behavior of piezoceramic disks
in the high-frequency range by creating a foundation
for the further development of piezoelectric devices
in acoustics, medicine, radio electronics and other
industries, where the accuracy and stability of device
operation are pivotal, and the obtained assessments
and conclusions can build the basis for building new
high-precision diagnostic systems.

The results presented by this study are being
implemented under the experimental scientific and
technical project titled “Development of an automated
ultrasonic system for extracting plant raw materi-
als to produce multi-nutrient functional drinks for
rehabilitation and preventing post-traumatic stress di-
sorders” (national registration number: 0124U000713,
2024-2025), which is under development at Cherkasy
State Technological University.
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Математичне моделювання електри-
чного iмпедансу п’єзокерамiчного ди-
ска, що коливається в широкому дiа-
пазонi частот (Частина 3. Високi ча-
стоти)

Базiло К. В., Усик Л. М., Хижняк Є. В., Жуйков

Д. Б., Ярославський А. В.

У статтi представлено результати математичного
моделювання електричного iмпедансу п’єзокерамiчного
диска, який коливається в широкому дiапазонi висо-
ких частот. Основною метою дослiдження є створен-
ня математичної моделi, яка враховує геометричнi та
фiзико-механiчнi характеристики матерiалу для оцiнки
поведiнки диска в умовах електромеханiчного резонан-
су та антирезонансу. Особливу увагу придiлено аналiзу
впливу радiальних i осьових змiщень матерiальних ча-
стинок на частотну залежнiсть механiчного коефiцiєнта
якостi та електричного iмпедансу диска. У науковiй ро-
ботi також врахованi специфiчнi ефекти, характернi для
високочастотного режиму, з метою пiдвищення точно-
стi моделювання i забезпечення оптимальних технiчних
характеристик пристроїв. Отримана в роботi матема-
тична модель дозволяє отримувати оцiнки частотної

залежностi механiчного коефiцiєнта якостi та динамi-
чної електричної ємностi в реальних умовах, зокрема
з урахуванням енергетичних втрат через в’язке тер-
тя. Числовi розрахунки пiдтверджують високу кореля-
цiю мiж теоретичними та експериментальними дани-
ми (розбiжнiсть мiж ними не перевищила 3 · 10−3 ),
що дозволяє використовувати модель для проєктуван-
ня п’єзоелектричних пристроїв. Зокрема, встановлено,
що частоти електромеханiчного резонансу та антирезо-
нансу практично не залежать вiд радiальних змiщень
матерiальних частинок i визначаються лише осьовими
компонентами. Розрахункова модель також забезпечує
можливiсть оцiнки електричного iмпедансу у високоча-
стотному дiапазонi з точнiстю, що вiдповiдає сучасним
вимогам до проєктування функцiональних пристроїв
п’єзоелектронiки. Отриманi результати мають практи-
чне значення для розроблення прецизiйних елементiв
виробiв вiйськової технiки, високоточних сенсорiв, уль-
тразвукових генераторiв, медичних дiагностичних при-
строїв та iнших технологiчних систем, що використову-
ють п’єзоелектричнi матерiали.

Ключовi слова: електричний iмпеданс; п’єзокерамiч-
ний диск; високi частоти; математичне моделювання;
добротнiсть; електромеханiчний резонанс
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