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This paper discusses the results of mathematical modelling the electrical impedance of a piezoceramic disk
oscillating in a wide range of high frequencies. The study aimed to create a mathematical model that would
incorporate geometric, physical, and mechanical characteristics of the material to assess the behavior of the
disk under conditions of electromechanical resonance and antiresonance. The research particularly focused
on the influence of radial and axial displacements of material particles on the frequency dependence of the
mechanical quality factor and electrical impedance of the disk. Even more closely, this research scrutinizes
specific effects characteristic of the high-frequency mode, in order to increase the accuracy of modeling and
ensure optimal technical characteristics of the devices. The mathematical model developed in this paper
serves as a tool to obtain estimates for the frequency dependence of the mechanical quality factor and the
dynamic electrical capacitance in real conditions, in particular, by including energy losses due to viscous
friction into the calculations. Numerical calculations confirm the high correlation between theoretical and
experimental data (with the discrepancy lower than 3-1072), which proves the model usable for designing
piezoelectric devices. In particular, it was found that the frequencies of electromechanical resonance and
antiresonance are virtually independent of the radial displacements of material particles and are determined
by the axial components solely. In addition, the calculation model provides the ability to assess the electrical
impedance in the high-frequency range with an accuracy that meets modern requirements for the design
of functional piezoelectric devices. The results obtained have practical significance for developing precision
elements for military equipment, high-precision sensors, ultrasonic generators, medical diagnostic devices,
and other technological systems that function with piezoelectric materials.
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Introduction

Mathematical modeling of the electrical impedance
of piezoceramic disks operating in a wide frequency
range is an increasingly important area in today’s
scientific research, being widely applied in modern
technology, in particular, in high-frequency modes.
Piezoceramic disks are key elements in ultrasonic
industrial devices, military equipment, sensors,
actuators, medical ultrasound devices, as well as
in non-destructive material testing systems [1].
Nonetheless, piezoceramic elements operating inhigh
frequencies require a deeper insight into their
electromechanical properties, which allows for the
effective development of devices with high precision
and stable operation.

Mathematical modeling, the results of which are
considered in this article, is fast becoming a key

instrument in meeting the increasing requirements for
the accuracy of modeling and calculating the electri-
cal impedance. The efficiency of devices based on
piezoelectric ceramic elements relies greatly on the
results of mathematical modeling, which makes the
studies in this field urgent and relevant. Failure to
consider high-frequency effects can lead to design
errors, reduced sensor sensitivity, or even device fai-
lure [2]. For instance, in high-frequency oscillation
modes, complex electromechanical interactions arise
that cannot be described without detailed mathemati-
cal analysis.

The research problem that we attempt to solve by
this study includes nonlinearities and specific effects
that arise in piezoceramic disks at high frequencies.
Not only does this approach allow us to predict system
behavior, but to optimize device design as well. Recent
developments [3, 4] claim that accurate mathemati-
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cal modeling of electrical impedance shortens the
development cycle, improves the product quality, and
reduces testing costs.

Therefore, mathematical modeling of the electrical
impedance of a piezoceramic disk oscillating in a wi-
de range of high frequencies may be applied to solve
important applied problems, including determining the
optimal design parameters of piezoceramic disks, predi-
cting their resource, and increasing operating efficiency
in a wide range of frequencies.

1 Topicality of the research
based on the literature review

Mathematical modeling of electrical impedance in
the high ultrasound frequency range is a narrow fi-
eld of research that combines aspects of bioelectrical
impedance tomography and ultrasound diagnostics.
Today, a large and growing cohort of investigators
are engaged in solving the problems of mathematical
modeling of electrical impedance. In the pages that
follow, we will review several most prominent and
relevant studies in this field.

A study of particular interest is by Habib Ammari,
Professor of Applied Mathematics [5], whose research
delves into mathematical analysis and numerical
methods for ultrasound-induced electrical conductivity
tomography.

Pol Grasland-Mongrain [6], whose area of interest
lies in the field of biomedical engineering, collaborates
with Habib Ammari on mathematical models for appli-
ed issues of ultrasound-induced electrical conductivity
tomography.

Research by Bastian Gebauer and Otmar Scherzer
[7] has presented a hybrid imaging technique
that combines electrical impedance tomography with
acoustic tomography. This approach exploits the
phenomenon in which the electrical energy absorbed
within a body increases its temperature, leading to
thermal expansion that in its turn generates acoustic
waves. By analyzing these acoustic signals, researchers
are able to determine the internal distribution of
absorbed electrical energy, and therefore the body’s
electrical conductivity. This method aims to combine
the high contrast of electrical impedance tomography
with the high spatial resolution of ultrasound imaging.

In Ukraine, mathematical modeling of the electri-
cal impedance of piezoceramic disks is the topic that
is being actively explored by a number of research
teams. In particular, at the National Technical Uni-
versity of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute,” which is one of the leading research centers
in this field, a team of scientists led by Professor
Yuriy Poplavko is developing innovative modeling and
analysis methods that investigate, among other issues,
piezoceramic disks [8].

G.E. Pukhov Institute for Modelling in Energy
Engineering and I.M. Frantsevych Institute for
Problems in Materials Science (National Academy of
Sciences of Ukraine) are another prominent research
centers of Ukraine that conducts fundamental research
into the properties of piezoceramic materials and
searches for innovative approaches to their mathemati-
cal modeling. For instance, a school of academics led
by Professor Halyna Oleynyk, is developing theoreti-
cal and practical solutions for the use of ceramic
piezomaterials in various devices [9].

As recent literature in the field suggests,
mathematical modeling of the electrical impedance
of piezoceramic disks is a subject of intensive and
extensive research both in the international and Ukrai-
nian academic community. The results to be obtained
guarantee and foster scientific achievements in radio
engineering, instrument making, medical technologies
and other areas where accurate and reliable methods
of analyzing and controlling piezoelectric materials are
critically relevant.

In view of the above, mathematical modeling of the
electrical impedance of a piezoceramic disk in the high-
frequency range is an extremely relevant and promising
topic, given the ongoing technological progress and
the growing demand for high-precision instruments for
various industries.

The purpose of the article is to develop a
mathematical model of the electrical impedance of
a piezoceramic disk oscillating in the high-frequency
range for an accurate analysis of its electromechanical
behavior.

2 Mathematical modeling of a pi-
ezoceramic disk transducer in
the high-frequency range

Let us consider a disk with radius R which exceeds
significantly its thickness «. The disk is located in a
cylindrical coordinate system, where the coordinates
(p, ¢, 2) determine its position, Fig. 1. The starting po-
int of this coordinate system coincides with the center
of the lower surface of the disk. The surfaces of the
disk at heights z = 0 and z = « are electrodes. In
this case, the piezoelectric disk is made of ceramics
of the “lead zirconate-titanate” class with thickness
a. The disk surfaces are covered with a thin layer of
silver (up to 0.01 mm) by thermal vacuum deposi-
tion technology [10]. The lower surface of the disk
(z = 0) has zero potential, i.e., it is grounded, and
an electric potential Uye™? is applied to the upper
surface z = a under the condition of ensuring the
electric field strength Up/a < 0,1 Ey in the polarizing
material of the disk, where Uj is the amplitude value
of the electric potential; i = v/—1 is an imaginary unit,
w denotes angular frequency of sign inversion in the
potential, tis duration of an oscillation cycle. The value
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of such a potential is selected under the condition that
guarantees the absence of nonlinear effects.

Fig. 1. Calculation model of a piezoceramic disk osci-
llating in a high-frequency range

Within the high-frequency range, where the elastic

wavelength becomes commensurate with the thickness
of the disk, the displacement vector of material parti-
cles has both radial and axial components. The electri-
cal impedance of the oscillating piezoceramic disk will
be determined as discussed in [11,12].
Radial component ugz)(p) of the material particles’
displacement vector, averaged over the disk thickness,
must satisfy equation [12]. Axial component u” (2),
averaged over the electrode surface area, must satisfy
the equation

(p)
0928 | () = 0, 1)

which is obtained from the equation of steady axial
oscillations after applying the averaging procedure to
it [12]. Symbol a(p)( ) in equation (1) denotes normal
stress 0., (p, ), averaged over the area of the electrode-
coated surface of the disk, i.e.

) R
(p) ﬁ/pozz (p, =
0

Normal stresses 53 (p), 05;5)( ) and o (2) are
obtained by appropriately averaging the following
expressions:

(2)
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Axial component D, (p) of the electrical induction
vector has the following notation

10
D, =e31—— |[pu, (p,z2)]+
(p) 31p8p[p p (p,2)]
a z i g
20D e p (02 (6
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From condition 0D, (p)/0z = 0, there follows
representation of the D, (p) component which is physi-
cally equivalent to expression (6)

- Uo
—uz(p, 0] = x53—- (7)
a
Subtracting relation (7) from expression (6), we
obtain

€31 0

; a—p{p [0 (0, 2) = u? ()] } +
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Averaging expression (8) over the disk thickness
gives us
EF) (p) = ~Up/a .

z

(9)

The averaging procedure (2) over expression (8)
brings us to the conclusion that in the case of a
thin disk, when u, (R, z) — u’” (R) = 0, the axial
component of the electric field strength vector averaged
over the area of the electroded surface takes the follow-
ing form

e é [ugp) (@) — ul (0)] } )

By averaging expressions (3) and (4) over the thi-
ckness of the disk, and considering definition (9), we
obtain

)= 2 ) 0
+ =z (p, @) —u: (p, 0)] + —Uo, (11)
) = 2 g 0)
E
+ R, ) s (o, 0+ D (12)
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The following estimate is valid for a thin disk:
uy (p, &) —u, (p, 0) = u” (o) — u (0) . Taking this
fact into account, we get the following result:

524 e
2 0%up z(p)+p up_ (p)
ap dp
+ [0FR)" 1] Wl () =0, (13)
where A\ = w/\/cF/po is the wave number of

the piezoceramic disk’s radial vibrations in the high
frequency range, when o, (p, z) # 0. The solution to
equation (13) is obvious

ul? (p) =C L (\p), (14)
where C denotes the frequency dependent constant to
be determined.

Subjecting relation (5) to the averaging operation
(2), and assuming at the same time that the estimate
u, (R, 2) = ul?) (R) is valid for a thin disc, we arrive
to the following result

~ 2ClE2 > D 8Uz (Z)
agg)(z):—R U’E))(R)—i_ 35,
€3 [, () €33
—= {uzp (o) — uy (0)} + *UO, (15)
X33&
where cfy = oy (1+K3%); K33 = e33/(x53c53)

is square electromechanical coupling coeflicient for
the thickness vibration mode of a piezoceramic plate
polarized over the thickness.

Substituting expression (15) into equation (1), we
reduce it to the following form:

2ul (2)
0 22

where v = w/\/ck/po is wave number of axial
(thickness) vibrations of the piezoceramic disk. The

solution to equation (16) is as follows:

+77ul? (2) =0, (16)

uP) (2)

3 = A cosyz + B sinvyz, (17)
where A and B are frequency dependent constants to
be determined. A, B and C constants are determined

from the boundary conditions

] L oul) W
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p

p=R
Lo (4% (0) = (0)] + =Ly =0, (19)

o # Q ’
o) (2) =0, (19)

z=a;0

where relation (15) defines normal stress o) (2).

Substituting solutions (14) and (17) into conditions
(18) and (19) brings us to the following system of linear
algebraic equations:

e31Ug
Amiyy + Bmis + Cmaz = ——F5—pa,
C12
e31Ug
Amay + Bmaa + Cmas = ———%—p2,  (20)
Ci2
e31Uo
Amg; + Bmas + Cmgs = ——5—pa,
C12
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where mq; = 770[ ; m12 = a
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m33 = Mma3; P3 = P2-

The solutions to the system of equations (20) can
be written in the following form:

A = _ea1lUo AA) — _e31Ug A(B) —
Jach B

yack, Ao
where A (A), A(B), A(C) and Ag are determinants
of the following matrices:

_e31Ug A(C)
yack, Ao

b1 Mmiz2 M3

A (A) = det P2 mo9o masl||
pP3 Mm3z2 M33
mi1 p1 Mis

A(B) =det ||m21 p2 mas||;
m31 Pps M33
mi1 M2 pP1

A (C) = det mo1 mo2  P2il;
ms1 M3z P3
mi1 M1z M3
Ag =det ||ma1  mar ma3
m3z1 M3z M33

Having defined A, B and C constants, we can wri-
te the averaged displacements uf,z) (R), u” (o) and
u (0) in an explicit form and define an expression for
the =° (w) function [12] in an explicit form
Uo .
AOF (w
where F€(w,II) is a function depending on the
frequency and geometric and physical-mechanical
parameters of the disk (IT symbol in the list of function
arguments), the numerical values of which are given by
the formula

B (w) = 1),

2 Ji (AER
Fe (o, ) = 2105 (o) LLATR)
X53cia R e
eigep;; _A(A) (1 — cosvya) +A(B) sinyal | o
X33¢12 e
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In this case, the desired electrical impedance of the
piezoceramic disk in the high-frequency range is given
by the following expression

Uo Ao
Za () = = — . (21
1) —iwC5Ef (w)  —iwC5Fe (w, II) (21)
where C5 = mR%x§;/a is the dynamic electrical

capacitance of a piezoceramic disk at high frequencies.

In other words, at the electromechanical anti-
resonance frequencies w,, under the condition of zero
energy losses due to viscous friction in the material of
the piezoceramic disk, its electrical impedance Z,; (w)
increases indefinitely, which eliminates the electric
current in the circuit and corresponds to the conditions
of an open electrical circuit.

Thus, in the high-frequency range, quite simi-
lar to the conditions observed in the medium-
frequency range, it is possible to calculate the
frequency dependence of the mechanical quality
factor in both medium and high-frequency ranges by
including mechanical quality factors and end-to-end
electromechanical resonances into the calculations.

3 Discussion of the modelling
results

In a real experiment, there are no zeros or infinities,
since in real elastic materials there are always viscous
friction losses. These losses can be calculated through
parameter @,,, which has the meaning of the mechani-
cal quality factor of the material. The @Q-factor is a
dimensionless number, the value of which is inversely
proportional to the energy losses in the oscillatory
system per period. In ideal elastic bodies, where vi-
scous friction entails no energy loss, @,, — co. In real
objects, the Q,,, quality factor has a finite value. Thus,
the elasticity moduli cg)\ (Qm) read as follows [13]

CEA (Qm) = Cgk (1 + Z/Qm« ) )

where cg/\ is the static modulus of elasticity; i = v/—1
is unit imaginary number.

Figure 2 presents the calculations for the modulus
of the electrical impedance of the disk, which have been
performed according to formula (21) with the following
fixed parameter set: ¢} = 110 GPa; c¥, = 60GPa;
ckh = 100GPa; e33 = 18C/m? ; e31 = —8C/m?
and x5; = 1400x0; xo = 8,85 - 1072 F/m s
dielectric constant; mechanical quality factor of the pi-
ezoceramics is @, = 100; piezoceramic density is pg =
7400 kg/m? . The thickness of the disc is & = 3-1073 m.
Ratio R/« , which was set equal to 100; 50; 25; 12,5
and 6,25, is the varying parameter of the family of
curves shown in Fig. 2. Numerical R/« ratio values are
indicated in the figure field next to the corresponding
curves. The values of the electrical impedance modulus
Ze (w) normalized to the magnitude of the modulus

(22)

Ze (wg) at the thickness antiresonance frequency w,
are plotted along the ordinate axis in Fig. 2. The di-
mensionless wave number ~ya is measured along the
abscissa axis. With the disk parameter values speci-
fied above, the ya = 1 value corresponds to the
cyclic frequency f = vP/(2ra) = 219,1kHz, where

vP = \/cb/po = 4130m/s is the propagation speed
of plane compression-tension waves along the electric
polarization of the disk.

O\Zel(co)| / |Zel(®a)|, Rel. units
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Fig. 2. Frequency-dependent change in the modulus

of the electrical impedance of a piezoceramic disk in

the vicinity of the first electromechanical resonance-
antiresonance frequency through thickness

From the results shown in Fig. 2, it follows that
with a significant change in the R/« ratio, the value of
the dimensionless frequency of the first electromechani-
cal antiresonance through thickness remains virtually
unchanged. This is confirmed by the constructions
shown in Fig. 3, where we have presented the calculati-
ons for expression |Z.; (w)|/|Zer (we)| in the immediate
vicinity of the antiresonance frequency. The abscissa
axis shows the values of the dimensionless frequency ya
in units of m-number, that is, ya/7 values. It is obvious
that the maximum possible change in the dimensi-
onless frequency of electromechanical antiresonance
does not exceed 0,027. A similar conclusion is true
for the influence of R/a on the value of the dimensi-
onless frequency of the first thickness electromechanical
resonance (Fig. 2), where Z.; (w) module takes mini-
mum values.

From the above results, the fact derives that radi-
al displacement uE,Z)(R) of the material particles has
virtually no effect on the numerical values of the
frequencies of the first electromechanical resonance
and antiresonance through the thickness. In other
words, the numerical values of the electromechanical

resonarnce and antiresonance frequencies are practically
completely determined by axial displacements u,(zp )(z) .
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Fig. 3. Frequency-dependent change in the modulus

of the electrical impedance of a piezoceramic disk in

the vicinity of the first electromechanical antiresonance
through thickness

Taking this circumstance into account, we can
argue that in the high-frequency range, function =¢ (w)
that determines the electrical impedance of the osci-
llating disk in the specified frequency range takes the
following form

= ()

1

€33 [

) (o) —ul? (0)| — UL
— |u” (o) —u} 0-
X33 ]

(23)

When calculating the electrical impedance with
formula (23), we will, naturally, omit some details of the
frequency-dependent change in the function Z.; (w).
Nonetheless, we will preserve the primary characteri-
stic, i.e., the numerical values of the frequencies of
electromechanical resonance and antiresonance.

A and B constants included into the description
of axial displacements ut? )(z) (see expression (17))

are determined from the boundary conditions (19),

(p)

where normal stress 03>’ (z) is given by the following

expression
ol (z) =
K2, (cosya —1)
D . 33
= —A
K2 i U
+B [cos'yz - o smva] + 38 1;’ } (24)
1+ K355 o Yyacss
Substituting the z = a and z = 0 values into

expression (24) and equating the obtained results to
zero, we obtain a system of linear algebraic equations
from which A and B constants are determined in a
unique way

_esslo tg (ya/2)
gy yaFe (w, 1)’ (25)
B=-A-tg(ya/2),
where
2

1+ K3 (h0/2)

Substituting expressions (25) into definition (17)
of the axial displacements of material particles of
the piezoceramic disk allows us to determine values
ul” () and u”(0) , which explicitly determine functi-
on =f(w), specified by (23). After this operation,
the expression for calculating the electrical impedance
Z. (w) takes the notation:

_ 1
o iwC§

Zey (w) Ff(w, II). (27)

From expression (27), it follows that when ~ya/2
tends to the 7/2 value from the left, the F* (w, IT)
function has positive values initially, then goes to zero,
which corresponds to electromechanical resonance, and
then tends to minus infinity. In the absence of energy
loss due to viscous friction in the material of the pi-
ezoceramic disk (Q,, — o0) at ya = , the electrical
impedance is Z; (wg) — 0.

Figure 4a demonstrates the change of F* (w, II)
function for Q,, — oo and K2; = 0,262 cases,
which corresponds to the set of physical and mechani-
cal parameters that served to calculate the curves in
Fig. 2 and Fig. 3. Figure 4b shows the modulus of a
complex-valued function F* (w, IT) normalized to its
maximum value when the mechanical quality factor
of the disk material is @,, = 100 and the dimensi-
onless wave number ya turns into a complex number
ya (1 —14/(2Qm)). Comparing the curves shown in
Fig. 2 and Fig. 4b, we can conclude that a detailed
calculation of the electrical impedance of an oscillating
piezoceramic disk should be carried out by formula
(21), and the numerical values of the resonance and
antiresonance frequencies should be assessed with the
function F* (w, IT), which is given by expression (26).

O,SFg(m,H) - 1’0|FE((”=H)|/‘F8(‘DOUH)|
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Fig. 4. Frequency-dependent change in function

F* (w,TI) in the absence of energy losses in the disk

material (a) and for a material with a mechanical quali-
ty factor Q,, = 100 (b)

As a concluding stage in investigating the electrical
impedance of a piezoceramic disk in a high-frequency
range, consider its value at the frequency of the first
electromechanical resonance.

In formula (26), the wave number v and the square
of the electromechanical coupling coefficient K2,
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depend on the value of the mechanical quality factor
Qm. Along with that, v = w/v? 24°(1 —i/(2Q.,))
and K23 = e33/[x5sc5 (1+i/Qum )], where 70 is the
wave number of axial vibrations of the disk, determined
without taking into account energy losses due to vi-
scous friction. Obviously, parameter ¢ = 1/(2Q,,) < 1.
Developing expression (27) at the frequency of the first
electromechanical resonance as a series in powers of the
small parameter e, and limiting ourselves to the zero
and first terms of the expansion, we obtain

K?%S\II (wr)

Tt (wy) = e—33 = \Wr) 2
) = G (T KRy >

th('yo(x/Q )

62 . J—
en V) = mayeeen

X33C33
1+sin(’yoa)/(voa)

cos2(y9a/2) '

Figure 5 contains graphs of the electrical impedance
modulus Z; (w), calculated according to formula (21)
in the immediate vicinity of the first electromechanical
resonance frequency. The ordinate axis displays the
values of the Z.; (w) function modulus in ohms, the
dimensionless frequency ya = wa/vP is plotted along
the abscissa axis, where v” = \/cl}/py denotes the
speed of plane compression-tension waves, to determi-
ne which we ignore losses in the piezoelectric. The
calculations were performed for a disk with the ratio
R/a = 12,5. The rest of the parameters are indicated
in the comments to Fig. 2. A variable parameter of
the family of curves in Fig. 5 is the mechanical quality
factor @,,, which was assigned the values of 60, 80, 100
and 120 units. The quality factor values are indicated
next to the corresponding curves. The graph clearly
shows that the largest @,, value corresponds to the
smallest electrical impedance Z,; (w,) value which, as
follows from formula (28), has positive real values, i. e.
| Zet (wr)| = Zet (wy).

2 _
where K33 =

+

Zel(®)|, Ohm
12\ ()|

i /
7

L x V4
L | Y

100 | 120 Yo
280 2,85 2,00 295

Fig. 5. Calculations of the electrical impedance
modulus of the disk in the vicinity of the first
electromechanical resonance frequency by formula (21)

Since value Z,; (w,) is measurable in a real experi-
ment, expression (28) implies an estimate of the

mechanical quality factor Q,, at the frequency of the
first thickness-through electromechanical resonance
- K?%S\II (WT)

272 (Wr) wrc’s (1 + K§3) .

Qm (29)

Comparing the theoretical (calculated) and experi-
mental data on the frequency dependence of the
mechanical quality factor Q,,, it can be seen that the
discrepancy between these data did not exceed 3-1073.

Note that the mechanical quality factor @Q,,, found
by [12] (we will denote this quality factor with fo;))
and the mechanical quality factor Q,(ﬁ), determined
by expression (29), are unequal. Moreover, inequali-
ty Qgﬁ) > Q%) must be satisfied. Quite obviously,
this state of affairs is due to energy losses. Due to
viscous friction, energy losses increase with increasing
frequency.

It follows from the theory of Lifshitz -
Parkhomovsky — Merkulov that the damping coeffi-
cient, 8 of ultrasound in a wide frequency range can be
described by the expression

B f? + 62/,

where §; and do are structural parameters, the numeri-
cal values of which are determined by the average size
of the grains of the material; fis the cyclic frequency.

The damping coefficient 8 and the mechanical
factor Q,, are related, that is, in the medium frequency

range [ = A/(QQ%)), and in the area of high

frequencies 8 = v/ (ZQ%)), where A and v are wave

numbers of radial and thickness-through oscillating
circular disks. Knowing the values of the mechanical
quality factors Qgﬁ) and Qgﬁ) at the frequencies of the
first and second radial, as well as the first and second
thickness-through electromechanical resonances, it is
possible to estimate the frequency dependence of the
mechanical quality factor both in the medium and high
frequency range. In addition, it is possible to form
an estimate of the frequency dependence of the Q-
factor in the transitional frequency range. The specified
estimates are extremely important for mathematical
modeling of functional devices of piezo electronics that
operate in a wide frequency range [14,15].

Conclusions

The purpose of the current study was to develop
a mathematical model to accurately determine the
electrical impedance of a piezoceramic disk oscillating
in a high-frequency range. The model developed in
this study incorporates both geometric and physical-
mechanical parameters of the material to evaluate
the behavior of the disk under varied conditions
of electromechanical resonance and antiresonance. In
particular, it has been found that in the antiresonance
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range, the electrical impedance increases indefinitely
under ideal conditions, which corresponds to the
absence of electric current in the circuit and is critical
when optimizing devices that operate in the high-
frequency range.

Numerical calculations showed that the frequency
dependence of the mechanical quality factor Q,,
strongly correlates with the experimental data, ensur-
ing high modeling accuracy (for example, the di-
screpancy between the calculated and experimental
data did not exceed 3-107%). Therefore, the developed
model is able to estimate energy losses due to vi-
scous friction, as well as anticipate behavior of the
piezoceramic material in transient modes. The second
major finding was that the developed model makes it
possible to analyze the frequency dependence of electri-
cal impedance Z,; (w), which is a significant factor in
designing functional piezoelectric devices.

In addition, the simulation results revealed a mi-
nimal effect of radial displacements of material parti-
cles on the resonant frequencies w,, which simplifies
the procedure for their analysis. Thus, in the high-
frequency range, the main parameters of the disk are
determined by axial displacements, which unlocks the
potential for optimizing such mathematical models in
practical applications.

Thus, the findings of the present study make several
noteworthy contributions to improving mathematical
models for analyzing the behavior of piezoceramic disks
in the high-frequency range by creating a foundation
for the further development of piezoelectric devices
in acoustics, medicine, radio electronics and other
industries, where the accuracy and stability of device
operation are pivotal, and the obtained assessments
and conclusions can build the basis for building new
high-precision diagnostic systems.

The results presented by this study are being
implemented under the experimental scientific and
technical project titled “Development of an automated
ultrasonic system for extracting plant raw materi-
als to produce multi-nutrient functional drinks for
rehabilitation and preventing post-traumatic stress di-
sorders” (national registration number: 0124U000713,
2024-2025), which is under development at Cherkasy
State Technological University.
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MaremaTnyHe MOIE€JIIOBAHHS €JIEKTPH-
4YHOTO IMIIEJIAHCY II’€30KEPaMivHOro Au-
CKa, 10 KOJIMBAETHhCA B HINPOKOMY Jia-
na3oHi gyacror (Yacruna 3. Bucoki 4a-
CTOTH)

Basino K. B., Yeux JI. M., Xuoscnax €. B., XKyiixos
/. B., SApocaascoruti A. B.

Y crarTi mpeAcTaBIEHO PE3YJIBTATH MaTEMATHIHOTO
MOJIEJIIOBAHHSI €JIEKTPUYIHOTO IMIIETAHCY I €30KEePAMITHOTO
JUCKa, AKWA KOJUBAETHCA B IIMPOKOMY [ialla30HI BHCO-
kux 49actor. OCHOBHOIO METOI0 JOC/I/KEHHS € CTBODEH-
HsI MATEMAaTWUIHOI MOJeJ, SKa BPAXOBYE T€OMETDHIHI Ta
dizuko-MexaniuHi XapaKTEPUCTUKU MaTepiaLy IS OIHKHI
MIOBE/IIHKY JUCKA B YMOBAX €IEKTPOMEXAHITHOTO PE30HAH-
cy Ta antupesonancy. OcobyanBy yBary NpHIiIeHO aHAJIZY
BIIJIUBY Pa/iajbHUX 1 OCHOBHX 3MiIIeHb MaTepPiaJbHUX da-
CTHHOK HA YaCTOTHY 3aJI€KHICTh MEXaHIIHOTO KoedirieHTa
SKOCTI Ta €JIEKTPUIHOTO IMIIeJAHCY AUCKa. ¥y HAYKOBiil po-
60Ti Takok BpaxoBaHi crermditiai edexTH, XapaKTepHi A1t
BHCOKOYACTOTHOI'O PEXKHMY, 3 METOIO IIBUIIEHHS TOYHO-
CTi MOJIETIOBAHHS 1 3a0€3MeUeHHsT OIITUMAJILHUX TEXHIUHUX
XapakTepucTuk IpucTpoiB. OTpmmana B poboTi mMarema-
THYHA MOJEJb [03BOJISE€ OTPUMYBATH OIHKY <YaCTOTHOI

3aJI€KHOCTI MEXaHIYHOro KoedilienTa sIKOCTI Ta JuHAMI-
YHOI €JIEKTPUYIHOI €MHOCTI B PEAJHhHUX YMOBaX, 30KpeMa
3 ypaxyBaHHSM €HEPreTHYHUX BTPAT dUepe3 B’si3Ke Tep-
1. UucoBl pO3paxyHKHU MiATBEPIKYIOTH BUCOKY KODeJIsi-
I[I0 MiX TEOPETUYHWMHU Ta EKCIEePUMEHTAJILHUMU TaHU-
vu (po3GixmicTs Mix HuME He mepesmmmaa 3 - 107%),
10 [T03BOJISIE BUKOPUCTOBYBATU MOJIEJb IS IIPOEKTYBAH-
HST IT'€30€JIEKTPUIHUX MPUCTPOIB. 30KpEMa, BCTAHOBJIEHO,
1[0 ACTOTH €JIeKTPOMEXAHITHOI0 PE30HAHCY Ta aHTUPE30-
HAHCY MPAKTUYHO HE 3aJ€KATh BiJ paJiajbHUX 3MINIEHDb
MaTepiaJbHUX YACTUHOK 1 BU3HAYAIOTHCS JIUIIE OCHOBUMU
KOMIIOHeHTaMu. Po3paxyHKOBa MOmesb TaKOXK 3abe3redye
MOKJIUBICTD OI[IHKU €JIeKTPUIHOIO iMIIETAHCY Y BUCOKOYaA-
CTOTHOMY Aiama30Hi 3 TOYHICTIO, IO BiAIOBIIAE CYYACHUM
BAMOTaM JI0 TPOEKTYBAaHHS (DYHKITIOHAJIHHUX IIPUCTPOIB
n’e3o0esekTponiku. Orpumani pe3ysibraTé MalOTh IIPAKTH-
YHe 3HAYEHHS I PO3POOJIEHHS MPEu3ifiHuX eJIeMEeHTIB
BUPOOIB BIICHKOBOI TEXHIKW, BUCOKOTOYHUX CEHCOPIB, YJIb-
TPa3BYKOBUX I'€HEPATOPIB, MEIUIHUX JIATHOCTUIHUAX IIPH-
CTPOIB Ta IHMIUX TEXHOJIOTIYHUX CHCTEM, IO BUKOPUCTOBY-
I0Th I1'€30€JIEKTPUTIHI MaTepiasin.

Kar04061 cao6a: €IeKTPUIHUI IMIIeJaHC; I’ €30KepaMit-
HMIl JUCK; BHCOKI YaCTOTH; MaTeMaTHYHE MOIE/IOBAHHS;
ITOOPOTHICTE; €JIeKTPOMEXaHITHNI PE30HAHC
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