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The frequency spectra and amplitude distributions of the natural oscillation fields of the same shape
and dimensions coupled dielectric resonator (DR) systems, located in one-, two-, and three-dimensional
rectangular lattices, are considered. Neglecting the coupling between non-adjacent resonators, general
analytical solutions are found for the linear homogeneous system of equations proposed earlier for describing
natural oscillations of coupled DR systems. An algorithm based on perturbation theory for solving systems
of equations of coupled oscillations of identical DRs is proposed, which allows reducing the solution to
the calculation of determinants of tridiagonal and pentadiagonal matrices. It’s shown that parameters of
coupled oscillations of rectangular structures are determined through simple distributions of amplitudes and
frequencies characteristic of Bloch waves of quantum particles in a periodic potential. Using the derived
general analytical formulas, the calculated frequencies are compared with the natural oscillation frequencies
obtained by numerical methods. For the first time, a general analytical solution is found for the distribution of
amplitudes and frequencies of a rectangular lattice with DR doubly degenerate types of natural oscillations.
It’s shown that in the case of zero coupling between degenerate oscillations of different types, the obtained
analytical formulas transform into expressions describing the oscillations of DRs in simple rectangular
lattices. General conditions are formulated, under which the solution of the equations for coupled oscillations
of DR systems can be found in analytical form. It’s shown that under the specified conditions, the distribution
of the amplitudes of coupled oscillations of identical DR lattices with degenerate and non-degenerate types of
eigenoscillations are interconnected to each other. In this case, a new method for calculating the amplitudes
and frequencies of coupled oscillations of DR lattices with degenerate oscillations is proposed. The obtained
formulas allow us to estimate in general terms the characteristics of the spectrum of eigenoscillations with an
increasing in the number of resonators. Several examples demonstrate a very good coincidence of the found
analytical and numerical results. The obtained theoretical conclusions significantly simplify the calculation
and optimization of scattering parameters of various communication devices in the microwave, infrared and
optical wavelength ranges, which are built based on the use of rectangular DR structures.
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Introduction

Rectangular lattices of dielectric resonators (DRs)
[1-22] are applied in various devices in the terahertz,
infrared and optical wavelength ranges, as well as in
filters [10, 16-22]; modulators [3-5]; lasers [1, 6] and
so on. The most widely used are one-dimensional
[15-17, 19, 21, 22] and two-dimensional [3-7, 12-14,
18], and more recently three-dimensional lattices [1,
2,5,8-12,20]. Such lattices contain a large number
of DRs, which complicates optimization of their
scattering parameters. Usually, the calculation of
parameters of the lattice is performed by using numeri-
cal methods, which requires significant computer
resources. Meanwhile, in some cases, it’s possible to
obtain more simple analytical solutions to problems of
natural oscillations for systems particularly containing
a big number DRs. Obtaining analytical expressions

for such complex lattices of coupled DRs allows us to
significantly simplify their analysis and optimization.

1 Statement of the problem

The purpose of this article is to obtaining analytical
solutions and analyzes problems of coupled oscillati-
ons of one-, two-, and three-dimensional rectangulare
lattices of DRs with no degenerate and degenerate
oscillations.

2 Natural oscillations of DR

lattices

In the [25] it’s looked for a solution to the problem
of coupled oscillations of a system of N DRs obtained
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in the form of an expansion their field (e, h) in terms
of the natural oscillations of the same, but isolated
resonators (eg, hy):

()2 ()

In general was obtained equation system for ampli-

(1)

tudes ||bs|| (1):
N
> kg bg—Aby=0 (s;t=1,2..., N), (2
s=1

where

A =2(0—wy)/wo = 2(0w/wo+iw”/we);  (3)
@ — complex frequency of coupled oscillations; dw =
Re(W—wp); w”’ = Im(®); wg — real part of the frequency
of isolated DRs.

The distribution of the amplitudes of coupled osci-
llations of a system of identical resonators ||bs|| was
formulated as an eigenvalues problem for a finite-
dimensional coupling operator K= ||sst]|:

ik,

K21 K31 KN1
K12 1ky K32 KN2
K = : ,
R1,N—1 HK2,N-1 K3 N-1 KN ,N—-1
K1,N Ka,N K3,N tkn

(4)
where kgt are coupling coefficients of a s—th and t—th
DR. Diagonal elements of the coupling operator matrix
K determined only by the magnitude of the radiati-
on of s-th partial resonators, represented by coupling
coefficient k.

Equating to zero, the determinant of the system

(2),

det ] Kt (1 — 652) + (iks — A\t

=0, (5)
was obtained the characteristic equation, the solution
of which determines the frequency splitting that arises
due to the electromagnetic influence of the resonators.
In this case, each non-degenerate value of the frequency
@ = w® +iw” (s = 1,2,...,N) of the system s-
th natural oscillations corresponds to its own column
vector:
b3
S

b=lbgl=| | s=12...

by

of the coupling operator K (¢t = 1,2,...,N) (4),
determining the distribution of amplitudes of parti-
al resonators. Thus, in the absence of degeneracy of
the DR natural oscillations, a system consisting of

N resonators is characterized by a N x N matrix of
amplitudes of coupled oscillations:

by b7 by’
by b3 by’

B : : (7)
by 0% by

In the general case, the solution of the system
of equations (2) is carried out numerically, however,
in some special cases they can be found in analyti-
cal form, which significantly increases the speed of
calculations, especially for large systems (N > 1).
We have considered particular solutions of (2) for di-
fferent rectangular lattices of identical DRs (ks = ko )
(s=1,2,...,N).

3 Natural oscillations of one-
dimensional lattices DRs

To find the eigenvalues and eigenfunctions of the
DR system, a relatively simple case was considered,
when each resonator is coupled only to its neighbors.
Let us call it the first approximation (Fig. 1,a). The
second approximation determined the solution obtai-
ned under the condition of taking into account the
coupling of resonators with neighbors and neighboring
neighbors (Fig. 1,b). Continuing this process, if desi-
red, we can calculate more accurately the parameters
of the lattice’s natural oscillations.

At first, we considered the simple case of a one-
dimensional lattice of N identical DRs, in which all
resonators are coupled only to their neighbors. Under
this condition, the system of equations (1) takes the
form:

R tbi1 + (ke — A)by + Ker1bigr = 0,
(t=1,2,...,N).
For identical DRs, the coupling coefficients of the
resonators with open space are equal to each other:
ki = ko. And if the resonators are located at equal

distances from each other: k¢_1+ = K¢y1,+ = K12 then
the system is simplified

Kiabs_1 + (Z];Jo - )\)bt + K/lzbt+1 =0. (8)

The solution of system (8) is well known [23]; we

represented it as a set of normalized eigenvectors with
an amplitude distribution:

by = bosin(6t), (t=1,2,...,N). (9)

Substituting (9) into equations (8), we obtain:

2K15 cos O + (il~c0 - ) =0. (10)

We supplemented equations (9), (10) with the
condition of symmetry of the amplitude distribution
for all resonators of the lattice |b,| = |by—pt1| (v =
1,2,..., N); from which we found:

|sin(6v)| = [sin[@(N — v+ 1)]]. (11)
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Fig. 1. One-dimensional lattices of N (a,b,d) identical DRs. The results of the numerical calculation of the

eigenvalues are dots; the analytical ones are crosses (a,c), obtained for the first approximation (a): N = 5;

ko = 0,5; k1o = 0,75—0,3i; (c,d): N = 4; kg = 0,5; k55 = 0, 7540, 4i; k93 = —0,5—0, 2i; k53 = 0,25+0, 14.(d, e)
(here and below the values of the coupling coefficients are taken arbitrarily)

The solution to equation (11) has the form:

g=0°= " (s

=1,2
(N +1)’

,2,...,N). (12)
The characteristic equation (10) together with (12)
determines the N eigenvalues found in the first approxi-

mation:

A= ilzzo + 2K12 COS [SW] ,

N+ 1) (13)

where each value A\? corresponds s-th normalized vector
(6) of natural oscillations of the resonator system:
b = b3 sin(0°t), (t=1,2,...,N). (14)

An interesting feature of the found solution is
the validity of the phase distribution functions of
the amplitudes of coupled oscillations obtained in
the approximation of interaction of only neighboring
resonators. As follows from (14), these functions also
do not depend on the electromagnetic parameters, but
are determined only by the number of resonators in the
lattice.

Fig. 1,c¢ shows the result of comparison of the
eigenvalues of a linear lattice consisting of 5 DRs,
calculated using formula (13) (crosses) and the ei-
genvalues obtained numerically for the truncated
coupling matrix (7) (dots) for the first approximation.

The formula for the second approximation was
found taking into account the coupling with the two

closest resonators on each side (Fig. 1,b). For this the
equation (2) was represented as:

Ft2,6bt—2 + Fe1,ebe—1 + (ko — A)byt

+Ee1+1,4De41 + Ketotbire =0,

further we used the following notations: k¢—1; =
Ri41,t = K12, Kt—2.t = K42, = K13- Then:

K192 (bt_1+bt+1 )+I€13 (bt_2+bt+2)+(i];30*)\)bt = O (15)

The exact analytical solution of system (15) is
cumbersome, so we used perturbation theory to
analytically represent the eigenvalues and eigenvectors,
assuming a smallness of magnitude of the coupling
coefficient |r13| < |K12].

For this purpose, the coupling matrix K
corresponding to the system of equations (15) was

represented in the form:
K = K + k13Q, (16)

and used perturbation theory [23,24], where K; —
the coupling matrix determined for the DR system
taking into account the interaction of only adjacent
resonators (10), and Q = [0s,—2 + Js,t+2]. To do this,
we expanded the eigenvectors (6)

b= ||bf[| = b} + K13b] + (k13)°b3 + . ..
and eigenvalues (2)

A° = A8+ K1sAS + (k13) A5 + ...
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in a series of powers x13. Here b{ and A\j - vector (9)
and eigenvalues (13) of the coupling matrix. Substitut-
ing the indicated expansions into (16) and equating the
terms with the same powers, we represented, according
to [24]:

N

D

s

Jshd
by

Ay — Ay

S

1=

where A _
" = (@b}, b))
1 = (@bg, b5); (17)
N
(a, b) = > a;b; is the scalar product of vectors in

t=1
complex N dimensional Euclidean space.

The obtained expressions (13), (17) made it possi-
ble to estimate approximations of different orders
in comparison with the results obtained numerically.
Fig. 2 shows the results of calculations obtained for
two lattices consisting of 10 spherical DRs, carried
out for the case of fundamental oscillations H;1; with
magnetic field polarization in the center of each of
the resonators, orthogonal to the lattice axis and whi-
spering gallery modes Hag 20,1. It’s obvious that the
first approximation (13), found by using the tridiagonal
matrix, is unsatisfactory for calculating the frequencies
for the modes of main types Hy1; (Fig. 2,b). However,
if the resonator field decreases rapidly with increasing
distance from its surface |k15| < |K12] for s > 2,
then both approximations give nearly the same result
(Fig. 2,d), close to the exact values.

4 Natural oscillations of lattices
with degenerate mode DRs

More complex solutions to the problem of natural
oscillations of a lattice of identical DRs with degenerate
oscillations (Fig. 3,a) were constructed based on the
assumption about the behavior of their amplitudes.
For simplicity, we assumed that in each resonator at
one frequency there are only two orthogonal modes.
We have designated these oscillations with letters: e -
even and o - odd. In general x$§ # k99; in this case, the
coupling coefficients of the resonators with open space
are equal: I%f = l~c§ = ko.

We may have formulated the conditions
under which the field amplitudes of coupled osci-
llations of a lattice with DR degenerate modes are
connected with field distributions of the same lattice
with non-degenerate modes of resonators.

Indeed, in the case of a one-dimensional lattice, if
a coupling matrix is Toeplitz rsy = K5 and the di-
stribution of the amplitudes of the natural oscillations
obeys the relations:

N N
§ kst bs = by § Rg Ols,
s=1 s=1

where a; do not depend on ¢, then the frequency
spectrum of the same resonator lattice with degenerate
types of natural oscillations is simply expressed
through the characteristics of the same lattice of
resonators with non-degenerate modes.

(18)
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Fig. 2. One-dimensional lattices of N spherical DRs with Hy11 oscillations (a) (€1, = 9); with Hgg 20,1 oscillations

(c) (e1r = 2,2). The first approximation results of the

numerical calculation of the eigenvalues are dots; the

analytical ones on (13) are cycles; for the second approximation on (16) are crosses (b,d): N = 10
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To prove this, we represented the system of equati-
ons (2), describing the amplitudes of coupled oscillati-
ons of the DR with degenerate modes in the form of N
paired equations:

Z K;uv bv

+ (ikg — \)bS = 0;

Z K:uv bv

t=1,2,..., N), where uv takes on the values ee;
00; eo, depending on the relationship between modes
of different types. We represented the solution of the
equation system in the form:

(iko — A\)b2 = 0;

by = A%y, (19)

where amplitudes A®° do not depend on the DR
number, and b; are the solution of the system of
equations (2) for DR with non-degenerate oscillations.
Substituting (19) into (18), we obtain a system of two
linear equations for unknown amplitudes A%°:

A¢ Z K bs+ A° Z K by (iko—\) A®b, =0;

s=1

N N ~
A° S k90 b+ A° S K b+ (ikg—A) A°b, =0
s—1 s=1

(20)
or taking into account (17)
N . N
[Z KE® as—l—(iko—)\)] CA°+ [Z K as} - A°=0;
s=1 s=1

Li Kg® O‘s] CAC+ ngl }2° ovg+ (iko — )\)} - A°=0.
(21)

A non-trivial solution to the system determines the
eigenvalues

N
AE =ik —|— Z (kS + K®) as+d (22)
s=1
N 2
d= [Z (KS® + #g°) as] -
s=1
N N N 271 /2
s=1 s=1 s=1
and the ratio of amplitudes:
N -
40 " {21 KE ag + (iko — )\)}
s—=
> €]
s=1

It also follows from the obtained results that in the
absence of a coupling between the degenerate modes

of all resonators (x¢° = 0), the natural oscillations
disintegrate into oscillations of two set of separate
submodes, the frequencies of which are determined
by the natural values found from two independent

equations.

5 Natural oscillations
dimensional lattices
degenerate mode DRs

of one-
with

As an example, coupled oscillations of a one-
dimensional DR lattice were considered. For simplicity,
only the first approximation was found, i.e. it was
assumed that the resonators are coupled only with nei-
ghboring ones (Fig 1,d), while the coupling coefficients
are non-zero: /@t 1t—mtt+1 /1“+1=
K1y Kyt = Kippr = Kis = K1s s and the degenerate
oscillations in each DR are orthogonal: k§y = 0.

In this case, equations (18) for the t-th DR lattice
with non-zero terms are represented in the form:

{“Efez(bgl +by 1) +R3 (DY +byy )+ (i]:CO —A)b;=0

K53 (b1 +by 1) +688(by_y +bY 1)+ (iko—A)bY =0 ;
(t=1,2,...,N)
(24)
The solution to system (24) was sought in the form:
bf = A®sin(ft), by = A°sin(6t), (25)
where also
ST
0=0°"= —; =1,2,...,N). 2
(N + 1) 7 (S ) 7 ) ) ( 6)

Condition (17), taking into account (25), takes the
form:

N

Z Kst bs = Ke14be—1 + Ket1,4ber1 =
s=1

= K12(bi—1 + big1) = 2byk12 cos(h),

where do we find the value: oy = 2cos(#). From (22),
(23) we determined the relative amplitudes:

A° ) A% = —[2cos(9)wSS + (iko — N)]/ [2 cos(0)AS3] (27)

as well as natural oscillation frequencies:
M = iko 4 cos(0) [(k5S + k93) £ d] (28)

where

d= ee 002_4 ee 00 _ (,€0)\2 1/2 29
= ¢ (k1% + K93) K15K15 — (K13) - (29)

The correctness of the reasoning carried out is confi-
rmed by a comparison of the eigenvalues obtained from
(26), (28) (crosses) and a numerical calculation of the
eigenvalues of the tridiagonal coupling matrix (dots)
(Fig. 1,e).
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6 Natural oscillations of two-
dimensional lattices DR

In a similar way, the natural oscillations of a two-
dimensional rectangular lattice consisting of N x M
identical resonators were calculated (Fig. 3,a). In this
case “coordinates” of each resonator were determined
by two numbers (s, t), s denoted the horizontal position
number, and ¢ the vertical position number of the DR
in a rectangular lattice. When solving the system of
equations (2) for the s, t-th DR, the first approximation
was considered to be taking into account the coupling
of each of the resonators only with the nearest ones of
the lattice (Fig. 3,a):

Kg-1,6-1]s,6Ps-1,6-1 T Ks-1,60s,6Ps-1,6 + Ks-1,541)s,tPs-1,641+

+’€s,t—1\s7tbs,t—1 + (ZkO - /\)bs,t + Hs,t+1|s,tbs,t+1+
+hs41,t-10s,8Ps41,6-1 T Kt 1,6]s,6Ps 1,6+
+hs i1, e41)s,6Ps+10+1 = 0,
(s L,2,...,N; t = 1,2,...,M). Here fypjs¢ —
mutual coupling coefficients between resonator u, v and
the resonator s, t.

For identical DRs, the coupling
were designated as fs_14—1js,¢

coefficients

Ks—1,t41]s,t
Rs41,t—1|s,t Rs41,t4+1]|s,t Ks—1,t|s,t
Rs+1,t|s,t = Ras Kst—1]s,t = Ks,t+1]s,t = Ky- In this case,
the system of equations takes a more compact form:

Ry

Kac(bs—l,t +bs+1,t) + Ky(bs,t—l +bs,t+1) + (Z.IEO—A)bs7t+
+ Kay(bs-1,t-1 + bs-1,641 + bgr1,6-1 + bst1,041) = 0.
(30)
The solution to the system of equations (30) was

sought in the form:
bs,: = bo sin(f,s) sin(6,¢), (31)

where it was assumed that by also does not depend on
the resonator number.

Substituting (31) into (30), we again found the
characteristic equation, which is independent of the DR
indices:

2k c08(0) + 2y cos(8),) + (iko — \)+

+ 4y cos(8,) cos(fy) = 0. (32)

Equation (32) was supplemented by the conditions
of symmetry of natural oscillations: |by | = [by_ut1.¢]
and |bs »| = |bs,m—v+1], where taking into account (31)

|sin(0,u)| = [sin[0, (N —u+ 1)]];

|sin(8,v)| = |sin[f, (M —v +1)]|. (33)

The solution of equations (33), as well as (11), (12),
we know:

nm mm

(N+1) (M +1)’
(n=1,2,...,N; m=1,2,...,M).

0y

0, = 0" = =

0, =

(34)

Expressions (34) together with (32) determine the
eigenvalues of a two-dimensional lattice of N x M
identical DRs in the first approximation:

+2ky cos [m] +

An,m = iko—‘rQlﬂ}x COS |: (M T 1)

el
+ gy cos [M} Wnﬂ)} . (35)

The result of the numerical (points) and analyti-
cal (35) (crosses) calculation of the eigenvalues of the
coupling operator (4) for the rectangular N x M = 4x4
DR lattice is shown in Fig. 3,b.

The second approximation for a two-dimensional
lattice in analytical form can be obtained similarly
to the approximation obtained for a one-dimensional
lattice using perturbation theory.

(o} o o o (o}
M e o o o . Im(?») Im(k)
s-1,t+1 s, t+1 s+1, t+1 x x
0o---0 0 © | L | ox
\ ‘ / o x ol x x
X Xy %
o - o o] (o} x - x
s—l,(/s‘( st t ‘ » f X
x
o - (o] (o] (o] x
s-1,t-1  s,tl s+l tl -1 x !
o o o o o ’ * Re()) ¢ * Re(h)
1 N
a b c

Fig. 3. Two-dimensional (a) lattice of identical resonators. The results of the numerical calculation of the

eigenvalues are dots; the analytical ones are crosses; b: NV

Key = 0,15 4+0,3¢; ¢: N = 4; M = 3; ko = 0,5; kK¢ = 0,75 — 0, 335 K°
ky? = —0,25+0,24; k35 = 0,240, 2:5 k37 = 0,1540, 145 x5° = 0,15 -0, 1i5 k3% = 0,2 —0,154; 55 = 0,140, 1z

Y

—4; M = 4; ko = 0,5; ki = 0,75—0, 3i; 5, = 0, 540, 2i;
~0,3 + 0,34; £ = 0,5+ 0,2i;
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of two-
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7 Natural oscillations
dimensional lattices
degenerate mode DRs

In the case of a two-dimensional rectangular lattice
of N x M identical resonators with two degenerate
types of natural oscillations (Fig. 3,a), the designati-
ons of the coupling coefficients of the degenerate
oscillations were retained, the same as in 6: l;e =

~O — 7. . uv — uv — p—
k3 = ko; Kol tm1)st = Feotitilst = Fettt—1|st —
uv uv. uv —_— 'LVU J— uv.
Rst1,t+1]s,t Raeys Ks_11)st Rst1,ts,t Kz
uv —_ uv —_ uv

Kt dlst = Fottise = By s where u,v take values

e or o depending on the mode parity of the partial
resonators, and the degenerate modes of each DR are
orthogonal to each other: x§7 = 0. Here also x:° olsit
mutual coupling coefficients between resonator u, v and
the resonator s, ¢. The “coordinates” of each resonator
we also defined by two numbers: (s, t), where s denoted
the horizontal position number, and the ¢ vertical posi-
tion number of the DR in a rectangular lattice. When
solving the system of equations (2) in the first approxi-
mation for the s,¢-th DR, the coupling of each of the
resonators was taken into account only with the nearest
resonators of the lattice, using above designations:

Ko (b§_1,t +b§+1,t) +"$Ze (bs,t—l +b§7t+1 )+ (“;O - )‘)bi,t"‘
+ w5y (bey o1+ g1 Do e Do)t

+ ”eo(bs 1t bs+1 o)+ ’feo(bs 1 b )t

Koy (bey i1 T bt est Fbgieq +b31e41) =0,

Ko (bs 1.t +bs+1 t)""ioo(bs -1 +byg t+1) (Zko_)‘)b(s),t—’_
+ w05 (b y o1 +Deg g1+ Dgi g Do)t

+ “eo(bs 1t 1 bs+1 o)+ "Jeo(bs ¢1 1+ bg RERDES
+“e0(b51t1 +bslt+1 +bs+1t1 +bs+1t+1) 0

(s=1,2,...,N; t=1,2,...,M).
(36)
The solution to the system of equations (36) was
sought in the form of standing waves of the Bloch type:

bift’ = by sin(0,s) sin(6,t), (37)

where it was also assumed that by does not depend
on the number of resonators.

Substituting (37) into (36), we again obtained a
system of equations, that does not depend on the DR
number:

{2[k5° cos(0z) + K§° cos(8y) + 2k5, cos(0,) cos(8y, )]+
+ (iko — A)} - b + 2[K%° cos(6,) + K3 cos(fy)+

+ 2k55, cos(0) cos(8y)] - by = 0;

2[K5 cos () + 50 cos(8y ) +2k5, cos(0, )cos(0,)] - b+
+ {2[r3°cos(8,) +ry°cos (8, ) +2k55 cos(0.) cos(8y )]+

+ (iko — N)} - b =
(38)

The non-trivial solution (38) determines the ei-
genvalues:

A = kg + (kS 4 k2°) cos(6,) + (Ky +ky") cos(fy)+
+ 2(K55, + Kay) cos(0) cos(0y) £ d, (39)

where

d = {[(k5° + K3") cos(0z) + (k" + Ky°) cos(fy)+

+ 2(KGy, + Koy ) cos(d ) cos(0y)]*—

) + K5 cos(0y) + 2K5; cos(f,) cos(fy)] x
cos(0z) + Ky cos(0,,) + 2k4, cos(b,) cos(0,)]+

— 4[kSe cos(

x [r5?
1

? cos(0; )+ 5, cos(fy) +2k5, cos(6) cos(ey)]2} ’
(40)

Equation (39) was supplemented by symmetry

b?vo ut1,| and \b‘f;ii\ =

+ AR

conditions: |bg

bV i1l (37), we

found:

nm . 0
(N+1)"
(n=12,...,

p— m,]T .
(M +1)’
N; m=12...,M).

0, =
(41)

The expressions (41) together with (39), (40) in
general define the 2 x (N x M) eigenvalues obtained
in the first approximation of a two-dimensional lattice
of identical DR with two degenerate types of natural
oscillations.

The result of the numerical (points) and analytical
(37)-(39) calculation of the eigenvalues of the coupling
operator (4) for a rectangular N x M = 4x3 DR lattice
is shown in Fig. 3,c.

8 Natural oscillations of three-
dimensional lattices DR

Three-dimensional lattices usually contain a very
large number of resonators, which significantly compli-
cates the calculation of their parameters, so obtaining
analytical relationships for them is a very urgent task.
We considered the parameters of coupled oscillations
of a three-dimensional rectangular lattice of identical
N x M x L resonators (Fig. 4, a). In this case the coordi-
nates of each resonator of the lattice were determined
by three indices (s, ¢, u), where s denotes the number of
the horizontal position along the z axis, ¢ the number
of the horizontal position along the y axis and [ the
number of the vertical position of the DR along the
z axis. It was assumed also that the mutual coupling
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coefficients of the resonators are symmetrical:

Rs—1,t,l|s,t,0 = Ks+1,t,l|s,t,0 = Ka
R t—1,l|s,t,0 = Ks,t4+1,1|s,t,0 = Ky;
Rs,t,l—1|s,t,l = Kst,i+1]s,t,l = K23

Rs—1,t—1,l|s,t,0 = Rs—1,t4+1,l|s,t,0 = Ks+1,t—1,l|s,t,0 =
= KRs41,t+1,l]s,t,0 = Kay;

Rs—1,t,1—1|s,t,l = Rs—1,t,14+1]|s,t,0 = Ks41,t,1—1]s,t,l =

(42)

Kst+1,1—1|s,t,0 =

= Rs41,t,14+1|s,t,l = Raz;

Rst—1,1—1|s,t,l = Rst—1,14+1|s,t,0 =
= Ks,t+1,1+1]s,t,l = Ryz;
Rs—1,t—1,1—1]s,t,l = Rs+1,t+1,1+1]s,t,l —
= KRs41,t—1,1—1|s,t,0 = Ks—1,t4+1,14+1|s,t,0 = Kzyz;
Rs—1,t4+1,1—1|s,t,l = Rs+1,t—1,1+1|s,t,l =

= Ks41,t+1,1—1|s,t,l =

Rs—1,t—1,1+1|s,t,l = Rayz-

Then the system of equations (2) for the DR with
“coordinates” (s,t,l), in the first approximation, ta-
king into account the coupling only with the nearest
resonators of the lattice, can be represented in the
form:

Ry (bs—l,t,l + strl,t,l) + ’iy(bs,t—l,l + bs,t+1,l)+

+ kg (bg i + besart) + (iko — Nbg s+

+ Fxy (bs-1,6-1,u + bst1,641,1 + Psy1,6-1,1 + st e41,1)+

+ Kpz(Ds-1t0-1 + bse1t1:1 + bs1,6141 + b1t 141)+

+ Kyz(Ds t-1,1:1 + Ds p1,1-1 + Ds ¢o1,141 + bs g41,141)+

+ Koz (Dstt-1,1-1 + Dsti,e41,041 + bsgie-1,.1+

+bs1,441,041 + Ps-1,¢+1,0-1 + bs 161,041+

+ bst1t41,0-1 + bs1,e1,041) =0,
(s=1,2,...,N; t=1,2,... . M; 1=1,2,...,L).

(43)

The solution of system (43) was again represented

in the form:

byrs = bosin(fys)sin(0,t)sin(6.1).  (44)

Substituting (44) into (43), we found, taking into
account (42), after simple transformations:

25 c08(0y) + 2ty cos(,,) 4 2k, cos(6,) + (iko—\)+
+4K 4y cos(0z) cos(8y) + 4k, cos(0y) cos(6.)+
+4k,,co8(0y)cos(0;) + 8Ky cos(0y)cos(8,)cos(6,) =0,

from where:
A = iko + 2k cos(0,) + 2k cos(8,) + 2k cos(0. )+
+ 4Ky cos(6z) cos(8y) + 4k, cos(0) cos(6.)+

+ 4ky. cos(By) cos(8,) + 8kay= cos(8s) cos(fy) cos(by).
(45)

Also using the symmetry properties of the fields of
natural oscillations of a rectangular lattice: |b, ;.| =

|bN77'+1,t,u|; |bs,v,u| |bs,M7v+1,u|; |bs,t,w| =
[bst,L—w+1]|, we similarly determined:
0 — o — nmw m mm

TN+ Y (M +)

I
92 = 9l = 5
(L+1)
(n=12,...,N;ym=1,2,...,M; 1=1,2,...,L);
(46)
~ nmw T
Al — ko + 2k cos [] + 2k, cos { ] +
0 (N +1) Y (M +1)
+ 2K, cos [ T } +
(L +1)

dky
+ 4Ky COS N+1] [M+1)}+
+ 4K, cOs +

N +1) L +1)

4ky.

+ 4Ky, cos M—i—l] {L+1}+

8 . mm I
Bty €09 [<N+ 1)] [<M+ 1>} [<L+ 1)] '
(47)

In particular, as follows from (35), (47), (3), if the
coupling coefficients of the DR in different “directions”
of a square lattice are equal, then the natural oscillati-
ons degenerate: \™"™ = A\"" for a two-dimensional
and similarly A\»™! = X\l for a three-dimensional
lattice.

Real amplitudes (9), obtained in the approximati-
on of taking into account the coupling only between
neighboring resonators, gives rise to another type of
degenerate oscillations of the system. Indeed, if in the
case of a one-dimensional lattice the solutions of the
system of equations are represented in the form:

b, = bgcos(fn), (n=1,2,...,N)

then we will get the same set of frequencies of coupled
oscillations (13), as when choosing the amplitude di-
stribution (9). In this case, the symmetry conditions
|b1| = |by| will also be met. A similar statement is
obviously also true for the two-dimensional and three-
dimensional lattices considered above. In this case,
the degree of degeneration increases in proportion to
the number of different combinations of the specified
distributions in different directions.

Fig. 4,b shows the results of comparison of the
eigenvalues obtained from (2) (crosses) and numerical
calculations (dots) for the truncated coupling matrix
of a rectangular lattice N x M x L =4 x 4 x 4.
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(s-1,t+1,utl) (s,t+1lutl) (st1t+1,utl)
o] o O
(s-Ltutl) (s,tutl) (stLtu+l)
e} o Im(A) Im(%) X
(s-1t-1,u+1) (s.t-1,u+1) (st1,t-1utl) » )( ) .
O x X x x
o OGHLY o T 3-()( " ] Lt *x x
(s-Lt+1uy T st XU ;i X oy
N — ¢ SV x 0 g
o /\ - o li%ﬂ( | )8 %
(s-1tw) A\ (stu) (s+1,tw) )():(M)( » e ?l x
— AN x
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Fig. 4. Three-dimensional lattice (a) of identical resonators. Results of numerical calculation — points; results of

analytical calculation in the first approximation — crosses (b): N =4; M =4; L =4; ko = 0,5; k., = 0,6 — 0, 3¢;

Ky =0,540,24; k, = 0,440,245 kpy = 0,15+ 0,31; Kz = 0,1 — 0,25 Ky, = 0,15+ 0,245 Kyy, = —0,140, 34;

(¢): kg = 0,6 — 0,335 k5 = 0,3+ 0,15i; k5° = 0,2+ 0, 1i; Ky = 0,5+ 0,2i; kg = 0,2+ 0, Li; k° = 0,140, 14;

kS = 0,440,245 K7 = 0,2 —0,1i5 £3° = 0,2 — 0, 145 65, = 0,15+ 0,34; vy, = 0,15 — 0,135 x5 = 0,140, 13;

kS, =0,1—0,2i; k2, = 0,15+ 0,2; 52 = 0,1 — 0,2i; &5, = 0,15+ 0,24; &%, = 0,15 — 0,245 £ = 0,1 — 0, 13;
ke = —0,14+0,1i; k2, = —0,140,14 k2 =0,1+0,1i

TYZ Yz TYz

9 Natural oscillations of three- and
dimensional lattices DR with
degenerate modes

§/06 = —[25°° + (iko — N)]/[25%°).  (52)

Fig. 4,c shows the results of comparison of the
eigenvalues obtained numerically from (4) for the
truncated coupling matrix (dots) and calculated using
formula (51) (crosses) for a rectangular lattice
N x Mx L=4x4x4.

Summarizing further the results obtained above, we
formulated the following statement:

if the coupling matrix is Toeplitz (ksy = Kisq) =
kn), and the distribution of the amplitudes of the

The parameters of coupled oscillations of a three-
dimensional rectangular lattice of identical N x M x L
resonators (Fig. 4, a) were calculated for the case when
each of them had two degenerate types modes. Keep-
ing the designations of Sections 6 and 7, taking into
account the solution for the amplitudes:

b7, = by sin(f,s) sin(6yt) sin(6.1), (48) natural oscillations of identical resonators obeys the
o relations:
we found a system of equations: in the case of a one-dimensional lattice:
25 + (iko — A)]bS + 25068 = 0; N A
= 49 — .
{228068 + [2200 + (Zko o )\)]b(o) =0, ( ) Zl Kst bs by Zl Rn Qn;
s— n—=
where indicated: for two-dimensional lattice: (Kyy|st =
YU = kg cos(0;) + k" cos(0),) + kY cos(0.)+ Rlu-s|Jv—t| = Kn.m) and:
+ 2k5, cos(0:) cos(0,) + 2k cos(8,) cos(6,)+ N M N M
50 — .
I B CORED 50 SIS 55 S
u=1v=1 n=1m=1

+ 4k, cos(6,) cos(6,) cos(6,).
Y (6) cos(8y) cos(6:) for three-dimensional lattice: (Kyywjstr =

The indices u, v take values ee; 00; eo depending on  Kju|,jv—t|,jw—r| = Kn,m,1) and:
the type of natural oscillations of the DR.

Non-trivial solutions of the system (49) gave us the NU & AL
relative frequencies of natural oscillations: Z Z Z Fuvwlstr Duvw =Dstr Z Z Z Fim,m,l Qnml,
u=1v=1w=1 n=1m=1 [=1
L -
AT = iko + (5% +X°°) £ d, where ou,; Otm; Onm do not depend on t; s,t; s,t,7,
where (51) respectively, then the frequency spectrum of the latti-
1/2 ce with degenerate types of natural oscillations of

d= {(Zee 4+ 300)2 — 4 |;eeye0 — (290)2} } resonators (Fig. 3) is simply may be expressed through
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the coupled oscillation characteristics of the same
lattice with non-degenerate modes. As follows from
the results presented above, the formulated conditions
are not sufficient to obtain exact solutions, but they
allow the possibility of finding sufficiently accurate
eigenvalues in practically the most difficult cases for
N,M,L> 1.

The validity of this proposal is confirmed by
the examples given in this paper of the analytical
calculation of the parameters of coupled oscillations of
rectangular lattices with DR degenerate modes.

Conclusion

It is shown that the presence of symmetry in latti-
ces of identical resonators leads to the appearance of
relatively simple real harmonic distributions of the
amplitudes of coupled oscillations. Such amplitude
distributions do not depend on the electromagnetic
parameters of the resonators, but are determined only
by the geometric parameters of the lattice.

Analytical expressions for the parameters of
natural oscillations of one-, two- and three-dimensional
rectangular lattices of identical DRs are found.

The conditions for obtaining the first approxi-
mation using a tridiagonal matrix for calculating the
parameters of coupled oscillations are established.

The conditions under which the frequency spectrum
of a resonator lattice with degenerate types of natural
oscillations is expressed through the characteristics of
the same lattice with non-degenerate resonator osci-
llations are formulated.

The obtained analytical solutions to the problem
of natural oscillations of rectangular lattices with big
DR number are significantly simplify the calculation
and analysis of their characteristics: amplitudes and
frequencies.
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3B’ga3aHi KOJTUBAHHA IPAMOKYTHUX PEIlri-
TOK JieJIEKTPUYHUX pe30oHaTopiB (amasi-
TUYHI pillteHHs )

Tpybin O. O.

PosraamaoThcs CHEKTpW @ACTOT Ta PO3MOIIIN  aM-
IUTITY/ TOJIB BJIACHUX KOJWBAHb CHCTEM 3B’ sI3aHUX
nienekrpmaanx pesonaropis (IP) ommaxosoi dopmum Ta
pO3MipiB, pO3TANIOBAHWX B OJHO-, ABO- Ta TPUBUMIPHUX
npaMoOKyTHuX perriTkax. Hexryioun 38’s13kaMu Mixk He Cy-
ciHiMHu pe3oHaTOpaMu, 3HANIEeH] 3araJibHi aHAJITHYHI Pi-
TMeHHs JIHIAHOT OZHOPIAHOI CHCTEMHW PIBHAHB, 3aIPOTIO-
HOBaHOI paHimie /s ONWCY BJIACHUX KOJIMBAHb CHCTEM

3B’a3annx JIP. 3anponoHoBanuii aaropurMm pinieHHs CuU-
CTeM pIBHIHB 3B’I3aHUX KOJIMBAHBL OTHAKOBUX /[P, sikwmii m0-
3BOJIZ€ 3BECTH DPINIEHHA 0 PO3PAXyHKY BHU3HAYHUKIB TPH-
JlaroHaJibHOI Ta I ATHIiaroHaJbHOI Marpullb. Iloka3aHo,
0 TIAapaMeTpy 3B’SI3aHUX KOJWUBAHBb MPSIMOKYTHHUX CTDY-
KTyD BU3HAYAIOTHCA Uepe3 IPOCTi MapMOHIYHI pPO3MOILIN
AMIUIITY/ T 9aCTOT, K1 € XapaKTePHUMHU I8 BIIOXIBCHKUX
XBUJIb KBAHTOBUX YACTUHOK B TEPIOAMYHOMY MHOTEHITIAJI.
3a 101oMOoror0 3HANAEHIX 3araIbHIX aHATI THIHIX (DOPMYJI
PpO3paxoBaHi 9aCcTOTU MOPIBHIOIOTHCH 3 YaCTOTAMH BJIACHUX
KOJINBaHb, OTPUMAHUMM UNCEJHHUMY MeTomamu. Bmeprre
3HAUIEHO 3arajibHe AHAJJITUYHE PIIIeHHS I PO3IOILITY
aMIUIITYZ Ta 9acTOT HpAMOKyTHOI pemitku [P 3 mBokpa-
THO BHUPO/’)KEHUMHW THUIIAMHU BJIACHUX KOJIMBAHbL. [loKa3aHo,
1[0 y BHUIIQJIKY HYJBOBOIO 3B’S3KY MiXK BHUPOZKEHHMH KO-
JIMBAHHSIMHM PI3HUX THIINB, OTPUMaHI aHAJITUYHI BUPA3U
epexondaTh y BHPAa3W, gKi ONUCYIOTH KojumBauHa JIP B
6isbIn mpocTux npaMOKyTHuX pemriTkax. CdopmynboBami
3arajibHi YMOBH, IIPW BUKOHAHHI fKWX DINIE€HHs PiBHSHBb
I 3B’SI3aHUX KOIMBAHG cructeM I[P moxke GyTn 3HaiigeHO
B aHajgiTmgHOMY BHriadai. [lokazano, mo Ipy BHUKOHAHHI
BKA3aHUX YMOB PO3IOLI AMIUITYZ 3B’sI3aHUX KOJIMNBAHD
OonHAKOBUX pemriTokK /IP 3 BHpOIKeHMMH Ta He BHPOIKe-
HUMH THUIIAMYU BJIACHUX KOJIMBAHbL IIOB S3aHI MiXK €000IO0.
B mpoMmy Bumagky 3ampomoHOBaHA METOAMKA PO3PAXYHKY
AMIUIITYZT Ta YaCTOT 3B’s3aHUX KOJIWBaHbL pemritok [P i3
BUpOMKeHnMHU KommBanaaMmu. Orpumani dopmymm mo3Bo-
JSIOTH y 3arajbHOMY BHIJISl OIHUTHA XaPAKTEPUCTUKH
CIIEKTPA BJIACHUX KOJIMBAHD IIPY 301/IBITEHH] TMCIa PE30HA-
TOPIB y IPAMOKYTHUX pemnriTkax. Ha /IeKiThbKOX IPUKIIAIAX
JEMOHCTPYETHCS HPAKTUYHE CIIBIAIIHHS 3HANIEHUX aHA-
JITHUYHIX T 9UCEIbHUX pe3ysabraTiB. OTpuMaHi BHCHOBKU
Teopii CyTTEBO CIPOIIYIOTH PO3PAXYHOK 1 OMTUMI3AIGIO Ta-
pameTrpiB pPO3CIIOBaHHSA DPI3HOMAHITHHX HPHUCTPOIB 3B’A3KY
MIKPOXBMJIBOBOTO 1H(MPAUEPBOHOTO Ta ONTUIHOIO Jiara3o-
HIB JOBXKUWH XBUJIb, siKi TOOY/IOBaHI HA OCHOBI BUKOPHCTAH-
HSI IPAMOKYTHHUX CTPYKTYDp [IP.

Karowo6t caosa: OieeKTPUIHUI PE30HATOD; 3B s3aHi
KOJIMBAHHST; [IPAMOKYTHA PelliTKa; CIeKTPaJIbHa Teopis
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