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A known method of reducing the maximum level of side lobes of the autocorrelation function of sig-
nals with intra-pulse frequency modulation, for example, linearly-frequency-modulated signals, is using
their weight processing in a radio receiving device. An alternative to weight processing is rounding the
amplitude-frequency spectrum, for which nonlinear-frequency-modulated signals are used. Many varieties of
mathematical models of such signals are known, but the task of synthesizing new mathematical models of
signals with nonlinear frequency modulation does not lose its relevance today.

The authors of the article previously synthesized mathematical models of two- and three-fragment nonlinear-
frequency-modulated signals, which provide a decrease in the level of side lobes of the correlation function due
to compensation for frequency-phase distortions at the joints of fragments. The reasons for the occurrence
of these distortions are determined, substantiated analytically, and verified by modeling the mechanisms of
their compensation.

To further reduce the maximum level of side lobes; it is proposed to increase the number of linearly-frequency-
modulated fragments from three to five, for which the components of the mathematical model are calculated,
which provide compensation for the instantaneous phase jumps of the resulting signal at the joints of all its
fragments.

The structure of the work is due to the logic of the study. In the first section of the work, an analysis of
known publications was carried out, which indicates the absence of mathematical models of shifted time of
five-fragment nonlinear-frequency-modulated signals. From this, the task of the study is formulated in the
second section of the article. The third section of the work is theoretical; it is devoted to the analytical
definition of compensation components to avoid distortions of the instantaneous phase at the moments of
transition from one fragment of the signal to the next. It is determined that the frequency-time parameters
of all previous fragments contribute to forming phase jumps at the joints. The validity of the obtained
theoretical results was checked by modeling.
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Introduction

The improvement of radar systems is closely
related to developing new sounding signals capable
of providing high resolution and noise immunity in
a complex interference environment. Among such sig-
nals, a special place is occupied by signals with intra-
pulse modulation of frequency, in particular linear-
frequency-modulated (LFM) and nonlinear-frequency-
modulated (NLFM) signals [1-4]. Although LFM sig-
nals allow to provide the required energy of the
sounding signal by increasing its duration, they are
characterized by a relatively high peak of side lobe
level (PSL) of the autocorrelation function (ACF),

which reduces the quality of target detection against
the background of other powerful signals, for example,
reflected from local objects [5].

To reduce the maximum PSL (MPSL), researchers
have proposed various approaches, in particular, weight
processing of the signal [4,6-8] and rounding of the
amplitude-frequency spectrum (AFS) of the signal by
reducing its spectral power density in the low and high
frequencies [9-12]. Both approaches can be used in
parallel, since they have the exact physical nature, but
the difference between them lies in the implementation
area: the first works in the time plane, and the second
in the frequency plane.
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A practical alternative is to use multi-fragment
NLFM signals, the structure of which allows you to
adjust the frequency characteristics by selecting vari-
ations in the parameters of the fragments. NLFM
signals with a serial combination of LFM fragments and
a combination of fragments with linear and nonlinear
frequency modulation laws have become widely used
[13—17]. However, instantaneous phase jumps occur at
the joints of such fragments, which negatively affect
the spectral characteristics of the signal and cause an
increase in MPSL ACF.

This study considers the mechanism of occurrence
of phase distortions in multi-fragment NLFM signals,
and an analytical approach to their compensation is
proposed.

To further reduce MPSL NLFM signals, it is
proposed to extend this approach to the three-
fragment NLFM signal introduced in mathematical
model (MM), shifted in time, and by structural
synthesis to obtain a new MM five-fragment NLFM
signal that provides less MPSL ACF and improved
signal spectral characteristics.

1 Analysis of studies and publi-
cations

The creation of modern radar technology is based
on the widespread use of complex and straightforward
probing signals, the type of which is determined by
the complexity of the air situation and depends on
the mode of operation of the electronic means. Known
works [1-4] are devoted to the problems of formation
and formation of radar signals; research in this direc-
tion is actively continuing. NLFM signals are widely
used in various fields of activity, for example, air and
space control [2,4,17], where it is essential to ensure low
MPSL and minimize coordinate measurement errors
due to Doppler frequency shift. To this end, various
methods are proposed, which include [18-20].

Several authors propose to perform nonlinear intra-
pulse modulation frequencies based on polynomial or
piecewise-continuous functions for rounding the AFS
of probing signals [13-17].

Among the variety of NLFM, it is necessary to
distinguish a class of multi-fragment signals, consisting
of fragments exclusively from LFM and combinations
of LFM and NLFM. Note that the wide distribution of
signals based on frequency modulated (FM) fragments
is due to their tolerance to Doppler frequency shift,
significantly simplifying the coordinated processing
[10,12,13,15-17].

The increased attention to NLFM is due to the
additional possibility of reducing the MPSL ACF of
such signals. Researchers consider two- and three-
fragment NLFM signals and investigate methods of
their synthesis based on optimization of FM laws and

signal structure, especially processing for various appli-
cations, which are discussed in publications [18-23].

It is proved in works [5, 23] that phase jumps
occur at the junctions of multi-fragment NLFM signals
caused by a change in the speed value FM (SFM),
which is determined through the ratio of the frequency
deviation of the LFM fragment to its duration and
is the second derivative of the instantaneous phase —
a constant value for each of the fragments. Failure to
account for these phase jumps leads to a distortion
of the AFS and, as a result, to a possible increase in
MPSL and the nature of the change in MPSL ACF.
For the case of two- and three-fragment NLFM signals,
a mechanism for compensating for these jumps has
been developed, which provides a stable decrease in
MPSL ACF compared to conventional LFM.

Analysis of studies and publications showed that for
five-fragment NLFM signals, the issue of developing
and checking the operability of the MM shifted time
remains unenlightened. Therefore, further research in
this direction can significantly expand the capabilities
of modern radar technology and increase its effecti-
veness in various fields of application.

2 Formulation of the research
task

The work aims to develop and study the
mathematical models (MMs) shifted time of the NLEM
signal, consisting of five LFM fragments with phase
jump compensation at the joints of the fragments to
reduce the MPSL of its ACF.

3 Presentation of the

material

study

3.1 Study of MM functioning peculi-
arities of shifted time of two- and

three-fragment NLFM signals

In the works of many authors, for example [10, 12,
17-20], for the study of two- and three-fragment NLFM
signals, time-shifted MMs are used, the peculiarity of
which is that for each subsequent fragment, the time
scale is shifted by zero. For the case of three LFM
fragments with increasing frequency, these MMs for
instantaneous frequency and phase, respectively, have
the form:

fo+Bit, 0Lt <1,
fo+Af1+ Ba(t —T1),
T <t<T)+ Ty

o+ Afi +Afo+ B3(t—T1 —Tb),
T+ T, <t< Ts,

fn(t)|n:[1,3] =

(1)
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where fy is an initial NLFM signal frequency;

B1, B2, B3 — SEM of the first, second, and third LFM
fragments, which is determined from the relation
/Bn = Afn/Tna

n — fragment number of NLFM signal;

Af, is a frequency deviation (difference between upper
and lower frequencies) of the corresponding LFM
fragment;

T,, — duration of each signal fragment;

Ts = Ty +T5+T5 —sum of fragment duration of NLFM
signal.

In the future, when obtaining intermediate results
to reduce mathematical records, we will omit the values
of the time intervals of the fragments of NLFM signals,
since they are fixed.

The feature of MM (1), (2) functioning is automatic
compensation of instantaneous frequency jumps at
moments of transition from one LFM fragment to the
next. However, work [23] shows that instantaneous
phase jumps occur at the joints of fragments, which di-
stort the frequency-time structure of the NLFM signal,
as a result of which the MPSL of its ACF can increase.
The mechanisms for compensating for frequency jumps
and phase distortions have not been investigated in
well-known academic sources.

For further research, we will transition expressions
for the second and third-MM fragments (1) and (2)
from the shifted time scale to the current one. After
simplification, we get:

fa(t) = fo+ BiTh + Bat — B2T4, (3)
fa(t) = fo+ BiTh + BoTo + Bst — B3Th — BsTa,  (4)
QOQ(t) = 21X

x(4m+AﬁﬂhHm+Aﬁﬂ+%z—&nQ

()

Lpg(t) = 271X
X (= fo(Ty +T2)—

+(fo— (B3 — B1)Th — (B3 — B2)To) t + t2253> . (6)

(Afi+ Af2) (Ty + To) +

Analysis (3) shows that compensation for the
frequency jump at the junction of fragments in
a model with a sloped time scale is provided by
a harmful component 8,77, and physically considering
the additional frequency gain throughout the first LFM
fragment. In (4), we already have two compensating
components f377 and B3T3, which are also negative,
and feel the additional frequency gain due to SFM /3
at durations of the first and second fragments.

As a result of analysis (5) and (6), it follows
that compensation for phase incursions in MM with
a shifted time scale is tried to ensure that the
slit sets the zero value of the initial phase of each
subsequent NLFM signal fragment. However, although
they were compensated, frequency jumps caused addi-
tional phase jumps at the joints of fragments that are
not compensated in any way.

As indicated in [10, 18-20], MM (2) is obtained
by finding an indefinite integral over time from (1),
and the integration operation itself is given. From
the analysis of analytical dependencies, it turns out
that during the operation, as is mainly practiced, the
presence of integration constants is neglected, and
this in this case is decisive, since it allows us to find
the value of phase jumps caused by frequency jumps.
We prove this statement analytically, for which we
integrate (1):

Pn(t)]p=(1,3 = 27X

/fl t)dt = fot + ——

/fzt—T1

2
% + o ( —T175> + Cy;

ﬁ + Ch;
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/f3(t—T1—T2)dt =

= (fo+ BTy + BTa)(t —Th

2
+ By <t(T1+T2))+Cg.

- To)+

Integration constants C; — C3 in (7) are calculated
according to the initial conditions, which are the time
values t at the beginning of each of the fragments, based
on this, Cy = 0, and for Cy we have:

Co = p2(t)|jeq, = —=T7 (B2 + B1) . (8)

Accordingly, find Cs:

Cs = p3(t)]—p, = —% [T7 (B3 + A1) + T3(Bs + B2)] -
9)

The integration constants Cy and C5 have a physi-
cal interpretation of the jumps of the instantaneous
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phase at the moments of transition from the first to
the second and from the second to the third fragments.
To compensate them in the model, we must introduce
negative compensation components that we denote
5(,012 = CQ, and 5(,023 = C3.

Thus, it was found that applying the operation of
shifting the time scale by zero mark for the second
and third LFM fragments in MM (1) is equivalent
to the introduction of compensation components of
instantaneous frequency jumps at the junction of
fragments. Model (2) is obtained without considering
the integration constants, which led to the loss of
the compensation components of the phase distorti-
ons caused by these frequency jumps. As shown in
[23], eliminating these instantaneous phase jumps at
fragment junctions in the vast majority of cases leads
to an improvement in the AFS of the resulting NLEM
signal and, as a result, a decrease in the MPSL of their
ACF.

Studies conducted by many authors [10,12,17] on
the example of two- and three-fragment signals show
that an effective way to reduce MPSL ACF NLFM sig-
nals is to increase the number of fragments. However,
ignoring the detected mechanism of instantaneous
phase jumps at the joints of fragments of NLFM sig-
nals significantly complicates and narrows the range of
choice of their frequency-time parameters.

Thus, the results obtained in this subsection are the
basis for the structural synthesis of a signal with many
LFM fragments. For example, for the case of five, the
MPSL of its ACF is expected to be lower than that of
the considered MM.

The next section of the article is the actual conti-
nuation of the studies performed in [23], and is based
on the results obtained in this work.

3.2 Synthesis of the mathematical
model of the shifted time of the
five-fragment NLFM signal

To test the hypothesis, we will use the approach
outlined in [23] and the results of the previous
subsection. As a base, we use the received MM three-
fragment NLFM signal (7), in which phase jumps are
compensated at the joints of LFM fragments due to
the input of compensation components (8) and (9).

Increasing the number of fragments of the NLFM
signal to five implies calculating the value of two addi-
tional instantaneous phase jumps. Using the approach
used in [23] and based on the analysis (8), (9), we
conclude that the instantaneous phase jump at the
junction of LFM fragments is proportional to the sum
of the products of the square of the duration of each
of the previous fragments by the sum of SFM of the
corresponding previous and current fragments. Follow-
ing (8) and (9), we can write the expressions for the
compensation components of the phase jump at the

junction between the third and fourth fragments:

63a == (TE(Ba+ B1) + T3 (Ba+ B2) + T35 (Ba + B3)) -

(10)

By analogy, for the moment of transition from the
fourth to the fifth LFM fragment, we have:

1
2

(T2 (Bs5+B1)+ T3 (Bs+B2) + T3 (B5+B3)+
+T3(Bs + Ba)) . (11)

N | =

05 =

Thus, using (7) and taking into account (10) and
(11), we obtain MM in the shifted time of the five-
fragment NLFM signal:
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MM (12) can be written in compact form:

Pn ()] =15 = 27X
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Verification of theoretically obtained results is
performed by construction and analysis of AFS and
ACF NLFM signals using MMs (1), (2), (7), (13) and
a known MM LFM signal [1-4].

(13)
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3.3 Results of mathematical modeling

The performance check of the proposed MM (13)
and the comparative analysis (1), (2), (7) were carried
out using the MATLAB application software package.
When modeling, the frequency-time parameters of the
signals were chosen to be identical, that is, the total
deviation and duration of the NLFM signals coincided
with the duration and deviation of the LFM signal
frequency.

During the studies, the following were modeled:

- LFM signal duration 120 us with frequency devia-
tion 500 kHz;

- three-fragment NLFM signals by MM (1), (2)
(Fig. 1,2) and by MM (7) (Fig. 3) with fragment
duration Th = T3 = 15 us, To = 90 ps and their
frequency deviations dfy = dfs = 100 kHz, dfs =
300 kHz;

- five-fragment NLFM signal (13), duration of
fragments of which T3 = T, = T, = T5 = 10 us,
T3 = 80 us, and their frequency deviations df; = dfs =
100 kHz, dfs = df, = 50 kHz, df; = 200 kHz (Fig. 4).

Only ACF measurement results were used for the
LFM signal; no graphic material was given.

The graph of the change in the instantaneous
frequency of the NLFM signal over MM (1), which
is shown in Fig. la, allows us to conclude that
there is no frequency distortion at the junction
of fragments, which confirms the fact of automatic
compensation of frequency jumps in MM shifted ti-
me, this graph also indicates that the change in the
frequency of the synthesized signal occurs in a parti-
cular range.

The oscillogram of the signal (Fig. 1b) shows sig-
nificant instantaneous phase jumps at the joints of
fragments, which cause substantial distortion of the
resulting signal’s AFS (Fig. 2a). The presence of phase
jumps causes significant AFS dips at the fragment
docking frequencies; ripples on their slopes are another
sign of such jumps.

In the presence of large jumps of the instantaneous
phase, the ACF in Fig. 2b has a high MPSL, the
side lobe level has a chaotic distribution, which is a
sign of phase distortions, and the phase change is also
indicated by the presence of “steps” of ACF slopes.

The results of studies MM (7) and (13) confirm
the assumption of the effect of phase jumps at the
joints of fragments and the number of fragments on the
appearance of the AFS and MPSL ACF of the resulting
signal.
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The signal spectrum MM (7) of Fig. 3a was
rounded, which ensured a decrease in MPSL of its ACF

(Fig. 3b).
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MM (13) is investigated for the first time, since in
the known literature, there is no information about the
existence of MM shifted time of five-fragment NLFM si-
gnals. As predicted, increasing the number of fragments
of the NLFM signal to five decreased the MPSL of its
ACF (Fig. 4b). This is due to an even greater rounding
of its spectrum (Fig. 4a) due to a smoother change in
the SFM of the resulting signal.

Table 1 Comparison of ACF signal parameters
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Fig. 4. Normalized spectrum (a) and ACF (b) of a five-
fragment signal, MM (13)

Analysis of the results shown in Table 1 supports
the hypothesis that an increase in the number of LFM
fragments of the NLFM signal can provide a significant
decrease in the MPSL of its ACF, this is confirmed by
the results obtained for MM shifted time NLFM signals
with compensation for instantaneous phase jumps at
the joints of fragments. The decrease in MPSL is
accompanied by an expansion of the main lobe (ML)
ACF, which is caused by a reduction of the effective
spectrum width of NLFM signals. It is impossible to
predict the nature of the change in the PSL decay
rate, since it depends on the distribution of side lobe
level and can change significantly with the change in
the parameters of NLFM signals, both upwards and

downwards.

Parameter name / Signal type LFM | NLFM-3 MM (2) | NLFM-3 MM (7) | NLFM-5 MM (13)
MPSL, dB 1347 | 125 (+7%) 187 (-39%) 933 (-73%)
ML ACF width at level 0.707, ps 177 | 2.02 (114%) 2.05 (+16%) 2.44 (138%)
Rate of decline PSL, dB/dec 19.8 20.9 (+6%) 13.6 (-31%) 18.0 (-9%)
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In the table, the three-fragment signal is marked References

as NLFM-3, five — NLFM-5, indicating which MM is
used. The table charts indicate the percentage of the
current parameter to the LFM signal case in brackets.

Conclusions

For the first time, a mathematical model in the
shifted time of a five-fragment NLFM signal has been
proposed and analytically substantiated, compensating
for phase jumps at the joints of fragments. By increas-
ing the number of fragments, it was possible to provide
a better rounding of the resulting AF'S signal, that is,
a smoother change in its SFM.

It is analytically shown that the values of phase
jumps at the joints of fragments depend on the dura-
tion and SFM of all previous fragments. For the
first time, a relationship was obtained to determine
the compensation components of instantaneous phase
jumps at the joints between the third-fourth and
fourth-fiftth LFM fragments.

The results demonstrate an improvement in the
spectral characteristics of the signal and a decrease in
the MPSL of its ACF to -23.3 dB, which is almost
10 dB better than the standard LFM signal. The cost
of lowering MPSL is to extend the maximum level ACF
signal by 38% and reduce the PSL drop rate by 9%.

Such behavior is a well-known phenomenon: the
reduction of the side lobe level is typically achieved
at the expense of a partial degradation of the signal’s
range resolution, which manifests as an increase in
the width of the mainlobe of the ACF. Determining
the optimal balance between the mainlobe width and
the side lobe level is a multi-objective optimization
problem in the Pareto sense, and the resulting solu-
tion is always a compromise. Typically, to ensure the
required range resolution, it is necessary to increase
the signal bandwidth in advance, or, depending on the
current radar task, to use different types of probing
signals. Within the scope of the present study, the
primary focus was on reducing the side lobe level, as
this factor directly affects the quality of detecting weak
target echoes against strong clutter from the ground. In
particular, in radar systems for detecting low-altitude
targets, this factor is dominant.

The model is of practical importance for radar
systems detecting low-altitude targets, especially in
non-stationary passive interference. Future research
will focus on determining and justifying the optimal
number of fragments, as well as on analyzing the effect
of their number on the spectral characteristics of the
signal.
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OcobsmBocTi (pyHKIIOHyBaHHs TA CHH-
Te3y MATEMATUYIHUX MOJIeJIell 3CYHYTO-
ro gacy 6ararodpparMeHTHUX HEJIiHIHNHO-
4aCTOTHO MO/IYJIbOBAHUX CUTHAJIB

Kocmupsa O. O., I'puso A. A., Jodyx O. M.,
Conomonenko FO. C., Bapsapos B. B.

BimoMuMm MeTOmOM 3HMXKEHHS MAaKCUMAJIBHOTO PIiBHS
OlYHMX MeJIOCTOK ABTOKODeJAMmiitHOl (yHKHI curHagis
3 BHYTPINIHLO-IMIYJIbCHOIO MOMYJSINEI0 YACTOTH, HAIIPU-
KJIa, JIHIHHO-9aCTOTHO MOZYJIbOBAHUX CUTHAJIIB, € 3aCTO-
cyBaHHs IXHBOI BaroBoi O0OpOOKM B DPaIionpuiiMabHOMY
TpUCTPOI. AJIbTEPHATUBOIO BAroBiit 0OPOOIl € OKPYTJIeHHS
AMILTTYJHO-JACTOTHOIO CIIEKTPY, [JIs Y0r0 3aCTOCOBYIO-
ThCA HEJIHINHO-YACTOTHO MO/Y/IhOBaHI curxaaum. Bimomo
6araTo pI3HOBHIIB MAaTEMATUIHUX MOJEJeil TaKMX CUTrHa-
JiB, OHAK 33/1a49a CHHTE3y HOBUX MATeMAaTHIHUX MOJeJIei
CHTHAJIIB 3 HEJHIIHOIO YaCTOTHOIO MOIYJIAIIEIO HE BTPAYIAE
CBO€ET aKTYyaJIbHOCTI 1 Ha CHOTO/IHI.

Amropamu craTTi paHinie CHHTE30BAHO MaTeMaTHUYHI
Mozesi 1BO- Ta TpudparMeHTHUX HeJIHIHHO-IaCTOTHO MO-
yJIbOBAHUX CHUTHAJIB, AKi 3a0€3[edyi0Th 3HUKEHHS PIiBHSI
6iYHMX TIeTIOCTOK (DYHKILT KOPEJISIT 38 paXyHOK KOMITEHCA-
mii TacToTHO-()A30BUX CIIOTBOPEHDb HA CTHUKAX (pparMeHTiB.
Busnadeno npuiuH BUHUKHEHHS XX CIIOTBOPEHb, 00T PYH-
TOBAHO AHAJITUYHO T IEPEBIPEHO IIJISTXOM MOJIETIOBAHHS
MeXaHI3M’ iX KOMITeHCAITii.

3 MeTO0I0 IOJATBIIOr0 3HMKEHHS MAKCUMAJILHOTO PiBHS
OIYHUX MEJIIOCTOK y POOOTI IIPOMOHYETHCH 301/IHIIUTH KijTb-
KICTh JIIHIHHO-9aCTOTHO MOY/IbOBAHUX (DPATMEHTIB 3 TPhOX
[0 TSTH, JJIS 90T0 PO3PAXOBYIOTHCS CKJIAJ0BI MaTeMa-
TIHOI MOzesl, dgKi 3a0e3MmedyoTh KOMIEHCAIII0 CTPUOKIB
MuTTEBOI Ba3uM pPe3yIbTYIOUOr0 CUTHAJIY HA CTHKAaX BCiX
ioro ¢gpparmeHTis.

Crpykrypa poboTu 06yMOBJI€HA JIOTIKOIO TOC/IiXKEHHS.
VY nepmomy po3zisi pobOTH IPOBEIEHO aHAI3 BiJOMEX IIy-
OiKariit, IKuil CBIAIUTH PO BiACYTHICTH MATEMATHTHUX
Mofesiell 3CyHyTOTrO dYacy II'aTrudpParMeHTHUX HeTiHifHo-
9aCTOTHO MOJYJ/IbOBAHUX CHIHAJIB. 3 3a3HAYEHOIO BUTIKAE
3aBJAaHHS JOCTIIKEHHs, sike (DOPMYIIIOETHCSA y JIPYrOMY
pozzaini crarTi. Tperiit po3ain poboTu — TeopeTudHui, 1oro
NPUCBAYEHO AHAJITUYIHOMY BH3HAYEHHIO KOMIICHCAIIMHNUX
CKJIQJIOBUIX [Tl YHUKHEHHSI CIIOTBOPEHb MUTTEBOI (asm y
MOMEHTH IIePeX0ay Bizm oxHOro ¢bparMeHTy CHUrHAIY 0 Ha-
crynaoro. Busnadeno, mo Bkiaz y dopmysanas HazoBux
cTpubOKiB HA CTUKAX BHOCSATH YACTOTHO-YACOBI IapaMeTpu
BCix mnorepeuix dpparmentiB. /ocTOBIpHICTH OTpUMaHUX
TEOPETUYIHUX PEe3y/IbTATIB EPEBIPEHO WIJIAXOM MO/IEIOBA-
HHSL.

Karwosi crosa: HeniHIHA 9aCTOTHA MOILYJIAIISA; MaTe-
MaTUYHA MO/IE/Ib; CTPUOOK MUTTEBOI (Da3u; aBTOKOPEIsIIi-
Ha BYHKIIS; MAKCUMAJIbLHIN PIBEHb OITHUX IETI0CTOK
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