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The understanding of pain mechanisms in infants is critically important because newborns lack verbal
communication abilities to report their pain experiences. This study focuses on analyzing electrical brain
activity features in time and time-frequency domains using electroencephalographic (EEG) signals collected
during clinically required noxious stimuli in newborns. Different feature extraction techniques are explored
by applying a combined feature selection approach with forward feature selection and statistical measures
involved. Six machine learning algorithms, namely Logistic Regression, Linear Discriminant, K-Nearest
Neighbors, Support Vector Machines, Random Forest, and Gaussian Naive Bayes, were used and compared
with the purpose of painful events recognition in newborns. Two binary classification tasks were considered:
the first task was to distinguish between EEG signals before painful stimulus and after it (painless and
painful state of the patient) and the second task was to distinguish between EEG signals on the background
of the painful event (heel lance for blood sampling in neonates) and signals without painful events (audio
stimulation).
In the task of EEG signals classification into pre- and post-painful stimulus segments, the support vector
machines classifier showed the best accuracy estimate of 93.5% with the pre-painful EEG segments
classification accuracy of 100% and post-painful segment classification accuracy of 86.9%. In the task of
distinguishing between EEG signals containing painful events as heel lance and signals without painful
events, the linear discriminant algorithm showed the best accuracy estimate of 84% with 76.9% correctly
determined EEG segments containing painful events and 91.6% correctly determined EEG segments without
painful events. Results demonstrate the potential of using features that focus on spectral power in alpha,
beta, and gamma frequency bands and machine learning techniques for advancing pain detection in neonates.
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Introduction

Modern medicine faces significant challenges in
both detecting pain in newborns and measuring its
severity [1]. Medical practitioners use indirect signs to
determine pain levels in nonverbal patients who cannot
express their discomfort [1]. The development of effecti-
ve pain-management strategies and prevention of long-
term pain effects requires a better understanding of the
neuro-physiological mechanisms that control neonatal
pain responses. Several validated scoring systems ex-
ist in medical practice [1], but there is no universally
accepted standard. The current assessment methods
combine objective physiological indicators, including
heart rate and blood pressure and cortisol levels, with
clinical observations of facial expressions and crying
patterns and movement behaviors [1].

Research conducted on newborn electroencephalo-
graphic (EEG) signals during painful medical
procedures [2–4] shows that machine learning
technology demonstrates potential for detecting pain
occurrences of newborns, creating automated pain
assessment techniques as well as analyzing pain related
markers based on the large amount of features. The
automated assessment method reduces the need for
subjective interpretation when evaluating newborn
health status during painful medical procedures. The
creation of reliable algorithms for infant pain detection
presents substantial opportunities to enhance pain
management practices [2–4]. The development of these
advancements could help reduce the potential negative
developmental effects that result from early pain
exposure.

It was shown [5] that neural networks are highly
effective in EEG signal analysis for pain-related pattern
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detection since they are able to model complex nonli-
near patterns in high-dimensional data. The analysis of
EEG signals for pain detection benefits from convoluti-
onal neural networks (CNNs) because these networks
automatically extract meaningful features and identi-
fy pain-related brain activity patterns in unprocessed
EEG data. Models using band power features, such as
Shallow ConvNet, outperform other models for classifi-
cation of EEG segments regarding presence or absence
of painful events. But since neural networks provi-
de direct EEG signal analysis, the current methods
do not enable researchers to explain or fully understand
how the brain’s reaction to pain is manifested in the
EEG signal, which limits the interpretability of the
results. In order to better understand and interpret
the results of artificial intelligence models by doctors
and identify pain-related markers in newborns, it is
necessary to study various features in time and time-
frequency domains while performing feature selection
and developing machine learning models.

On the other hand, the task of investigating electri-
cal brain activity in newborns in case of painful events
remains relatively new, so the most informative EEG
leads and rhythms have not yet been clearly establi-
shed. The research findings in the study by Norman, E.
et al. [2] showed that pain-related manifestations
appeared mainly in the beta rhythm but the study
provided by Marianne van der Vaart [3] discovered
that beta rhythm features provided less information
than lower-frequency rhythms. Also, Talebi S. et al
[4] used the Student’s t-test and pseudo-sequential
forward feature selection methods and spectral analysis
to determine that theta activity in the Cz EEG lead
and delta activity in C4 were the most important
features for pain vs no-pain classification. No useful
features were found in the alpha and gamma bands.

Despite the fact that machine learning techniques
are already used for pain recognition in newborns, there
is still a need for deep feature analysis. This work
considers the search of pain-related markers in EEG
signals of newborns based on the power features in
different frequency bands, providing feature selection
and machine learning techniques to identify and study
pain-related markers of newborns.

1 Materials and methods

The task of automatic recognition of painful and
non-painful states in infants using machine learning
methods is relevant since newborns are nonverbal pati-
ents who cannot assess their pain and inform the
doctor about its degree. Machine learning techniques
as well as neural network models, which leverage
power features in different frequency bands, can be
an appropriate tool to identify painful and non-
painful states with high precision. Based on the neural
network models evaluation, band power analysis may
be more suitable for detecting pain-related markers

in neonates compared to an event-related approach
but the understanding of the exact features and pain
markers is still a complex task. The pre-training
approach also requires more in-depth analysis to find
a correlation between features and prove the approach
for the neural network models training.

This work considers the search for pain-related
markers in newborns by EEG signals analysis based on
the feature detection in different frequency bands and
machine learning models training. Two datasets with
responses to painful stimuli were used in this study.
The first dataset Cortical, behavioral, and physiological
responses following a single, clinically required noxious

stimulus in neonatal subjects by Jones, L. et al [6]
contained EEG data of the newborns collected during
blood collection from the heel. The second dataset
Distinct patterns of brain activity mediate perceptual

and motor and autonomic responses to noxious sti-

muli by Tiemann, L. et al [7] consisted of EEG data
registered in adults and contained responses to painful
laser stimuli applied to the dorsum of the left hand.
The dataset was used to evaluate the potential of using
adults data for the machine learning pre-training in
the tasks where the amount of data is crucial, like
neural network studying, and if the approach can be
used in the future. The expectation was to determine
whether there are similarities in the pain markers in the
electrical activity of the brains of adults and infants.

EEG signals from both datasets were pre-processed
and segmented as 2 seconds pre- and 2 seconds post-
stimulus and were labeled as two classes: pre- and
post-stimulus (painless and painful state of the pati-
ent). EEG signals of newborns were also used to di-
stinguish between the signals containing painful events
(heel lance) and those without painful events (audio
stimulation).

1.1 EEG dataset of newborns with

reactions to a painful procedure

The neonates dataset used in this study is a dataset
of EEG, behavioral, and physiological responses to

a painful procedure in human neonates with relevant

medical history by Jones et al recruited from the
postnatal, special care, or intensive care wards at the
Elizabeth Garrett Anderson Obstetric Wing, Universi-
ty College London Hospital [6]. 112 neonates partici-
pated in a research (29–47 weeks of gestational age
at study). Cortical activity was registered as a 20-
channel EEG recording using a modified international
10/10 electrode placement system, with high-density
central-parietal and posterior temporal coverage. Each
signal is associated with a research event such as a heel
lance as a painful stimulus or an audio control as a non-
painful stimulus. Signals were digitized with a sampling
rate of 2 kHz and a resolution of 24-bit.

Database documentation was also provided by
Jones et al [6], including the quality of the
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neonates’ EEG signals recorded using the modified
10/10 electrode placement system and the stimulus
information, such as the Premature Infant Pain Profile
(PIPP) score. EEG channels with poor EEG quality,
defined by Jones et al [6] were not involved in the
analysis. Signals were grouped after the pre-processing
based on the available PIPP scores. Records with a
PIPP score from 0 to 5 were marked as a “low pain
level” group (46 patients), records with scores from
6 to 12 – as a “mid pain level” group (27 patients),
and records with scores higher than 12 – as a “high
pain level” group (5 patients). Signals without available
PIPP scores (33 patients) were also used in training
according to the experiment design and considered bi-
nary classification tasks: pre- and post-painful event
signals classification and distinguishing between EEG
signals with and without painful events. For the EEG
signals without painful events, 60 patients are available
in the “low pain level” group, 8 patients in the “mid pain
level” group and 32 patients without available PIPP
score.

With the two classification tasks set in this study,
the neonates dataset was used to form two data groups.
EEG signals from newborns were segmented into two
fragments: 2 seconds pre- and 2 seconds post-stimulus
and were labeled as two classes: pre- and post-stimulus.
A total of 220 EEG segments of the neonates’ EEG
signals (110 for each class) were used for machine
learning. For the second classification task, we used
EEG signals with painful stimulus (heel lance) and
without (audio stimulation). 210 EEG signals of the
neonates data were available (110 EEG signals class
containing painful events and 100 EEG signals without
painful events).

A 4th-order Butterworth band-pass filter with
cutoff frequencies of 0.5 Hz and 70 Hz and a band-stop
notch filter with a quality factor of 20 were applied to
filter signals, including 50 Hz power supply frequency.
Soft automatic and tunable artifact removal algo-
rithm [8] was used to remove EEG artifacts. Window-
wise wavelet packet decomposition and reconstructi-
on with a soft thresholding window size of 1 sec
(2000 samples) was used to employ statistical measures
such as standard and median absolute deviations and
wavelet coefficient distribution to establish thresholds
that were computed and applied to filter the wavelet
coefficients for each window for separating artifacts
from physiological components.

1.2 Adult EEG dataset with responses

to a painful procedure

To find the features reflecting the EEG responses to
painful procedures, EEG signals collected from adults
with responses to noxious stimuli were investigated.
EEG records of 51 healthy adult participants from
the dataset Distinct patterns of brain activity medi-

ate perceptual and motor and autonomic responses to

noxious stimuli [7] were used for this purpose. The
electrode montage included all electrodes according
to the International 10–20 system of scalp electrodes
location. EEG signals were referenced to the FCz
electrode, sampled at 1000 Hz, high-pass filtered at
0.015 Hz, and low-pass filtered at 250 Hz. 60 brief
painful laser stimuli were applied to the left hand of
the volunteers. Different intensities of the laser stimuli
were used (light, medium and strong): 20 painful laser
stimuli per record. A total of 9180 events were available
for analysis across all experiments.

1.3 Feature engineering for painful

EEG responses detection

EEG signals of newborns and adults underwent
analysis through time and frequency domain methods
as well as wavelet decomposition for time-scale
analysis. Multiple statistical and morphological
parameters were calculated from the time domain EEG
data. The time domain analysis included measures
of the mean value and mode. Standard deviation,
together with variance, served to evaluate the signal
variability. The standard deviation shows how much
data points spread out from their mean value, indicat-
ing the spread of EEG signal amplitude values, while
variance measures the total spread of values in relation
to their expected value.

The analysis included parameters that measured
both the signal’s magnitude and its distribution shape.
The root-mean-square value evaluates the signal ampli-
tude and signal energy in the time domain. Kurtosis [9]
characterizes how heavily the tails of a distribution di-
ffer from those of a normal distribution, while skewness
measures the asymmetry of the probability distribution
around the mean. The Higuchi [10] coefficient evaluates
the complexity and irregularity of EEG signals.

The following formula was used to calculate the
coefficient of kurtosis:

𝑘 =
1
𝑛

∑︀𝑛
𝑖=1(𝑥𝑖 −𝑋)4(︀

1
𝑛

∑︀𝑛
𝑖=1(𝑥𝑖 −𝑋)2

)︀2 , (1)

where n – signal length in samples, 𝑋 – average signal
value, 𝑥𝑖 – value of the 𝑖-th sample of the signal.

The asymmetry index was calculated as follows:

𝑆 =
1
𝑛
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Hjorth [11, 12] parameters, that are a set of features
(activity, mobility, and complexity) that quantify the
shape and frequency characteristics of EEG, were
also used for analyzed EEG signals. The activity
measurement determines signal variance which directly
corresponds to signal amplitude. The strength of signal
intensity or neural activation corresponds to high acti-
vity while flat segments indicate low activity. This is
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represented by the following equation:

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥(𝑡)) =
1

𝑁

𝑁∑︁
𝑡=1

(︀
𝑥(𝑡)−𝑋

)︀2
, (3)

where 𝑋 represents the mean of the signal 𝑥(𝑡).
The mobility parameter represents the mean

frequency of the signal. It estimates how quickly the
signal changes over time. The signal contains fast
transitions when mobility values are high, but it shows
slow waveforms when mobility values are low.

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =

⎯⎸⎸⎷𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒
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𝑑𝑥(𝑡)
𝑑𝑡

)︁
𝑉 𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥(𝑡))

(4)

Complexity measures the change in mobility within the
signal. The measure indicates how much the waveform
deviates from a basic harmonic form. The complexi-
ty value increases when the signal contains complex
temporal structures, which include abrupt changes and
multiple frequency elements.

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦

(︁
𝑑𝑥(𝑡)
𝑑𝑡

)︁
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥(𝑡))

(5)

From the perspective of entropy-based analysis, several
measures were calculated to assess the complexity and
regularity of the EEG signals. First, singular-value
decomposition (SVD) entropy [13] was computed. The
metric shows the minimum number of eigenvectors
needed to explain the dataset structure which indi-
cates its total complexity level. The system complexity
was measured by permutation entropy through the
analysis of consecutive value order and the generati-
on of probability distributions of their patterns. Fi-
nally, approximate entropy and sample entropy were
calculated to evaluate EEG time series regularity
through the assessment of pattern similarity probabi-
lity across the series duration.

The same parameters were calculated for the EEG
signals filtered in different rhythms of electrical activity
of the brain using a 4th-order Butterworth band-pass
filter. So, having 17 EEG channels for each patient and
16 parameters calculated, 1632 features were calculated
in the time domain.

Brief analysis of the neonates EEG power distri-
bution between classes (pre-painful EEG segment and
post-painful EEG segment, as well as EEG signal
containing painful events or without painful events)
showed the potential of using features from the
frequency and time-frequency domains to identify pain
markers (Fig. 1).

To obtain features in the frequency domain, a
Short-Time Fourier Transform (STFT) was applied
to the signal, after which the resulting spectrum was
divided into parts corresponding to different rhythms
of electrical activity of the brain: delta (0.5 - 3.0 Hz),
theta (4.0 - 6.0 Hz), alpha (8.0 - 14.0 Hz), beta (14.0 -
40.0 Hz), gamma (40.0 - 70.0 Hz). A Blackman window

with a STFT length of 1000 samples was used to
provide time-frequency analysis. The feature selection
scheme is shown in Fig. 2.

Fig. 1. Total energy spatial distribution of the “high”
group neonate’s EEG for the two states: pre-painful

and post-painful EEG segments

For the spectrum, as well as for each of the rhythms,
a full energy was calculated. Also, signal characteris-
tics that were listed in the time domain analysis were
calculated for the time-frequency domain. So, having
13 features for each of the 5 frequency rhythms and
each of the 17 channels, 1105 features were collected
in frequency and time-frequency domains. The total
energy was calculated as:

𝑃𝑟 =

𝑛∑︁
𝑖=0

𝐹 2
𝑟𝑖 , (6)

where 𝐹𝑟𝑖 is the value of the 𝑖-th sample of the ampli-
tude spectrum corresponding to the rhythm 𝑟.

After downsampling of EEG signals to 512 Hz, the
discrete wavelet transform (DWT) with decomposition
to 7 levels using the Daubechies wavelet function of the
2nd order was applied to analyze wavelet components
corresponding to the EEG rhythms. Aligning wavelet
components to the EEG frequency rhythms we obtai-
ned the following components: D1 (256 - 512 Hz), D2
(128 - 256 Hz), D3 (64 - 128 Hz), D4 (32 - 64 Hz
that corresponds to the gamma rhythm), D5 (16 -
32 Hz – beta rhythm), D6 (8 - 16 Hz – alpha rhythm),
D7 (4 - 8 Hz – theta rhythm), A7 (0 - 4 Hz – delta
rhythm). D1, D2, D3 detail components were ignored
in further analysis.

For each of the obtained wavelet decomposition
levels, all parameters were calculated, which were listed
in the time domain analysis. So, having 12 features for
each of the 5 wavelet decomposition components and
each of the 17 channels, 1020 features were derived from
the wavelet analysis.

In total, 3757 features were calculated for each
analyzed EEG signal and used in further analysis and
machine learning for two considered binary classificati-
on tasks (pre- and post-painful EEG classification and
classification of EEG signals containing painful events
and without painful events). The same features were
also determined from the adult EEG signals.
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Fig. 2. Neonates EEG signal processing and analysis for feature collection and distribution analysis in a time-
frequency domain

The cumulative sum control chart (CUSUM) [14]
metric was used for signal change detection. CUSUM
tests for changes in the mean by computing cumulative
deviations from a reference value (the mean), using the
following equation:

𝑆𝑡 =

𝑡∑︁
𝑖=1

(︀
𝑥𝑖 −𝑋

)︀
, (7)

where 𝑋 is the mean of the signal. Then, the CUSUM
statistic is max|𝑆𝑡| corresponds to fluctuating around
0 if the mean is constant. A shift in the mean causes
a slope in 𝑆𝑡 making max|𝑆𝑡| large. Another metric
was (max𝑆𝑡 −min𝑆𝑡) used to get the direction of
accumulated deviation.

1.4 Feature selection

One of the main goals of the study was to determine
the most important features describing pain markers
that manifest themselves in the signal of brain electri-
cal activity of newborns and are the most suitable for
machine learning to build models for the painful events
recognition in newborns.

The features were cleaned of the outliers using
a standardized score. A standardized score (z-score)
[15] is a measure of the relative dispersion of an
observed or measured value, which shows how many
standard deviations the dispersion of the relative mean
value corresponds to. Standardized value estimation is

calculated according to the formula:

𝑧 =
𝑥−𝑋

𝑆𝑥
, (8)

where 𝑋 – mean value, 𝑆𝑥 – standard deviation
calculated for a set of data 𝑥𝑖. Since the distribution of
z-scores is approximated by a standard normal distri-
bution, there is a one-to-one correspondence between
percentiles and z values. This allows for an unambi-
guous translation of the rank scale or scores into z-score
values and back (thus, the value z = 3 corresponds to
the 0.13 percentile, z = 2 – the 2.3rd percentile, z = 1
– the 15.9th percentile, etc.). Outliers were considered
to have absolute z-score value more than 2, values
that were smaller or larger than the given range were
assigned a minimum or maximum value respectively.
Outliers removal was only applied to provide a statisti-
cal assessment of the features and the forward feature
selection algorithm, while training and validation of the
models were performed with the original feature sets.

Statistical assessment of the features was used to
identify the features that can be used as pain markers.
This allowed to assess features independently from the
chosen machine learning algorithms and to analyze
the full set of features without the need to specify
the target number of features, as it is needed for the
forward feature selection. On the other hand, forward
feature selection was used to identify the starting
number of features to analyze and to validate feature
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values for the specific machine learning algorithms as
described further.

To evaluate the discriminative relevance of features
between the two classes, Student’s t-test [16] was
used as a statistical test for determining whether the
difference between the responses of the two groups
is statistically significant or not. In testing the null
hypothesis that the sample mean (the mean value of
the tested feature) is equal to a specified value 0, the
following equation is used:

𝑡 =

√
𝑛 (𝑋 − 𝜇0)

𝑠
, (9)

where 𝑋 is the sample mean, 𝑠 – the sample standard
deviation and 𝑛 is the sample size. The degrees of
freedom used in this test are 𝑛 − 1. The independent
two-sample t-test was computed for each feature,
treating the values from the two classes as separate
distributions. The t-statistic measures the difference
between class means relative to within-class variability
to show the strength of feature separation between
classes. Features with higher absolute t-values exhibit
stronger discriminative power. Unlike p-values, which
provide a significance level but are influenced by sample
size, the t-statistic directly reflects the effect size in
relation to variance, making it a suitable criterion for
ranking features [17].

To identify the starting amount of features to
analyze and provide further analysis, an iterative
Forward Feature Selection [18] method was used. This
method is a wrapper method, so it depends on the
machine learning model for which the feature selection
is performed. Direct sequential feature selection con-
sists of gradually increasing the number of features:
in the first iteration, the model is trained on each of
the independent variables separately and for further
training, the feature that provides the highest classi-
fication accuracy is selected. In subsequent iterations,
the algorithm checks how the addition of a new feature
to the existing subset affects. The feature whose addi-
tion led to the greatest increase in accuracy is added
to the feature subset. The absence of an increase
in classification accuracy when adding a new feature
was chosen as the stopping criterion of the iterative
algorithm.

The obtained features were also analyzed using
Student’s t-test and the top 20 features by the t-
score were chosen for further machine learning. The
example of the statistical feature analysis is shown in
Fig. 3. Also, if a specific feature was selected across all
machine learning methods using the Forward Feature
Selection method, it was also included in the resulting
set of features. Since not all available channels were
marked as valid, a threshold value of feature list length
was set prior to applying Student’s t-test. Features with
the 2.3rd percentile (features that are available for at
least 97.7% of patients) were used to apply Student’s
t-test.

Fig. 3. Distribution of the Higuchi coefficient in
Gamma rhythm for C3 channel for the pre-painful
(class 1) and the post-painful (class 2) EEG segments
of newborns based on the Student’s t-test assessment

1.5 Machine learning application

for painful events detection in

newborns

Selected features were used to provide machine
learning training for two classification tasks: pre- and
post-painful EEG segment classification and classifying
EEG signals containing painful events and without
painful events. Six machine learning algorithms were
chosen for the considered tasks.

Logistic Regression (LR) [19] is a supervised classi-
fication algorithm used to predict the probability of
an input belonging to a specific class. The algorithm
transforms input features into predicted class probabi-
lities through the logistic (sigmoid) function. The
model determines feature coefficients to achieve the
highest possible likelihood of correct training example
classification.

The supervised Linear Discriminant (LD) [20]
method transforms input features into a reduced-
dimensional space to achieve optimal class di-
scrimination. The method requires data to follow
normal distribution patterns with equal covariance
measurements between classes. The algorithm identi-
fies linear feature combinations that optimize class
separation through the maximization of between-class
variance relative to within-class variance.

The K-Nearest Neighbors (KNN) algorithm [21]
functions as a non-parametric instance-based learni-
ng method that determines new sample classificati-
ons through the majority class found among its K

nearest neighbors in feature space. The most typical
distance metrics for defining neighborhood closeness
include Euclidean and Manhattan. The algorithm lacks
distribution assumptions about data which provides
flexibility yet remains vulnerable to feature scaling and
K value selection. The algorithm performs best with
small datasets.

The supervised learning model C-Support Vector
Classification (C-SVC) [22] with a sigmoid kernel
performs binary classification by transforming input
data into a higher-dimensional space through sigmoid
function mapping. The decision boundary is determi-
ned by support vectors that lie closest to the separating
surface. The sigmoid kernel function creates non-linear
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decision boundaries. The regularization parameter C

determines how much to prioritize margin size against
classification error.

The Random Forest (RF) [23] ensemble learn-
ing method trains multiple decision trees and selects
the class that receives the most votes from all trees.
The training process of each tree uses both random
data samples and random feature subsets to prevent
overfitting and enhance generalization capabilities. The
robustness of the Random Forest method against noise
and its ability to handle high-dimensional data makes it
an appropriate choice for complex classification tasks,
including EEG signal analysis.

The Gaussian Naive Bayes (GNB) [24] classifier
uses Bayes’ theorem to classify data while assuming
that features become independent when the class label
is known. The model represents continuous feature di-
stributions through normal distributions that apply to
each class. The model achieves good results on high-
dimensional data despite its basic nature and strict
independence requirements. The algorithm operates
efficiently while delivering optimal results when the
features match normal distribution patterns.

Both datasets (pre- and post- painful EEG
segments and EEG signals containing painful event or
without painful events) were split into training (180
EEG segments and 171 EEG signals accordingly) and
test (44 EEG segments and 43 EEG signals accor-
dingly) data parts with a split factor of 0.2 which
corresponds to 80% of the training data and 20% of
the testing data. The train set of 180 EEG segments
and 171 EEG signals were additionally split with a split
factor of 0.2 for the training of the models to provide
validation accuracy estimates. Data were split taking
into account the distribution between classes to save
data distribution. Also, for the pre- and post-painful
EEG segments classification data was split, taking into
account patient affiliation: pre- and post-painful EEG
segments of one patient were used either as training or
validation data. For the task of EEG signals containing
painful event or without painful events classification
additional work was carried out to analyze only “mid
pain level” (PIPP scores from 6 to 12) and “high pain
level” (PIPP scores higher than 12) groups of signals
containing painful events and “low pain level” (PIPP
score from 0 to 5) group of signals without painful
events to eliminate data collection errors. Classes were
balanced with EEG signals containing painful events
from the “low pain level” group (PIPP score from 0 to
5) with higher scores. A total number of 125 signals
was available in this case.

A few techniques were chosen to improve model
training performance. It was decided to pre-tune the
models using hierarchical search. Grid search [25] is a
method that iterates through all possible combinations
of settings for each parameter. The following models
were used with variations of the following parameters:
KNN (selecting the number of neighbors used) and RF

(selecting the number of estimators). Also, collected
features were normalized by subtracting the mean and
scaling the variance to 1 with storing the mean and
variance values to be able to use the trained classifiers
on new data sets:

𝑧 =
𝑥−𝑋

𝑠
, (10)

where 𝑋 is the mean of the training samples and 𝑠 is
the standard deviation.

Model training was performed with the use of
common techniques [19–24] declared for each machi-
ne learning algorithm validating performance met-
rics, including accuracy, during training and cross-
validation. The best model was then used to provide
total accuracy estimates and evaluation across classes.

Total accuracy estimates were performed on the
previously unused testing data and was calculated
based on a total amount of true predictions across:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇1 + 𝑇2)

(𝑇1 + 𝑇2 + 𝐹1 + 𝐹2)
, (11)

where 𝑇1 is the number of true predictions in first class,
𝑇2 is the number of true predictions in second class,
𝐹1 is the number of false predictions in first class, 𝐹2 is
the number of false predictions in second class.

Accuracy for each class separately (Recall) was
calculated based on the number of true predictions to
the total number of analyzed signals in class:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦1 =
𝑇1

𝑇1 + 𝐹1
(12)

Permutation importance [26] was used with the
trained models to analyze feature importance from
the concrete model perspective and additionally
analyze feature importance compared to the statisti-
cal analysis. The permutation importance is defined
to be the difference between the baseline metric and
the metric from permutating the feature column. The
idea behind the method is that randomly re-ordering
a single column should cause less accurate predictions,
since the resulting data no longer corresponds to real
data. Results obtained for newborns were also analyzed
in comparison with the results for adults.

2 Results

Using the Forward Feature Selection method, 20
features from the total number of 3757 features
calculated for each patient were selected for further
statistical analysis. Also, 6 machine learning algorithms
(LR, LD, KNN, C-SVC, RF, GNB) were used for train-
ing in the scope of the two classification tasks: pre-
and post-painful EEG segments and classification of
the EEG signals containing painful events and without
the presence of painful events.
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For the task of the pre- and post-painful EEG
segments classification, it can be seen that C3, C4, Cz,
T7 and T8 EEG channels are the most valuable for
the pain event marker identification according to the
Student’s t-test statistical distribution. The Higuchi
coefficient, which is used to calculate the fractal di-
mension of an EEG signal and SVD entropy, which is
an indicator of the number of eigenvectors needed for
an adequate explanation of the data set in the gamma
frequency range are proposed as valuable pain-related

markers. Also, root mean square (RMS), standard devi-
ation and the mean signal value in a delta and theta
rhythms showed differences between the two investi-
gated classes according to the Student’s t-test (Fig. 4).

Selected features were used to train machine learn-
ing models. Gaussian Naive Bayes and the C-SVC
showed the highest total accuracy of 93.5%. Results
of the machine learning models training for the task of
the pre- and post-painful EEG segments classification
are presented in Table 1.

Table 1 Results of the machine learning models training for the task of pre- and post-painful neonates EEG
segments classification

LR LD KNN C-SVC RF GNB
1st class, % (pre-painful EEG segments) 100 100 91.3 100 95.6 100
2nd class, % (post-painful EEG segments) 74 82.6 78.2 86.9 86.9 86.9
Total accuracy, % 87 91.3 84.8 93.5 91.3 93.5

Fig. 4. Pain markers selected using discriminative relevance by the Student’s t-test for the task of the pre- and
post-painful neonates EEG segments classification

The same approach was used to identify features
for the task of classification of EEG signals contain-
ing painful events and those without painful events
(Fig. 5). Features that can monitor change detection
were added to the analysis (CUSUM). C4 and Cz
can also be noted as valuable channels for the pain
events detection. RMS, standard deviation and the
mean parameters in a delta, theta and gamma rhythms,
as well as CUSUM parameters, can become valuable
pain-related markers.

The same machine learning models were trained
with the selected features. Taking into account unsatis-
factory accuracy when using the full data set, a subset
of “mid pain level” (PIPP scores from 6 to 12) and
“high pain level” (PIPP scores higher than 12) groups
of signals containing painful events and “low pain level”
(PIPP score from 0 to 5) group of signals without
painful events were analyzed. This helped to eliminate
data collection errors. Results of the machine learning
models training are grouped in Table 2. LD showed the
best total accuracy of 84%.
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Table 2 Results of the machine learning models training for the classification task of neonates EEG signals with
and without painful events

LR LD KNN C-SVC RF GNB
1st class, % (signals without painful event) 75 91.6 83.3 75 58.3 75
2nd class, % (signals with painful event) 76.9 76.9 61.5 84.6 53.8 76.9
Total accuracy, % 76 84 72 80 56 76

Fig. 5. Pain markers selected using discriminative relevance by the Student’s t-test for the task of neonates EEG
signals classification of the containing painful events and without painful events.

It can be noted that C3, C4, Cz and T7 channels
are the most valuable for the pain event marker
detection and RMS, standard deviation and the mean
parameters in delta, theta and gamma rhythms as
well as Higuchi coefficient and SVD entropy in gamma
rhythm can be marked as pain markers of newborns.
If the task is to detect painful events without a speci-
fic time point, features that can monitor EEG signal
change should be included in the models.

Features collected using the Forward Feature
Selection method were also analyzed and feature
importance for each machine learning algorithm was
also estimated. A similar distribution of features can
be seen, but divergence with the statistical measures
should also be noted. Feature importance also differs
across different machine learning techniques.

The same analysis was performed for the adult EEG
signals, which showed a slight correlation between the
most significant features obtained for newborns. The
Cz and T7 channels have also proven to be valuable
channels for collecting pain-related markers in adults.
RMS and standard deviation have shown themselves
as valuable features for classifying painful events in
adult EEG signals. This shows the potential of using

adults data for pre-training of the machine learning
models to improve the classification results, especially
in a task where limited amount of data is crucial like
neural networks studying, but also highlights the need
for detailed experiment design data selection in such
cases.

3 Discussion

3757 features were calculated using different techni-
ques in time, frequency and time-frequency doma-
ins. Statistical measures such as Student’s t-test were
chosen as a feature selection approach. The Forward
Feature Selection approach showed correlation between
features selected for different machine learning algori-
thms and the statistical analysis, but unique features
for each machine learning algorithm with a low t-
criteria can also be noted. Also, the number and
value of features selected using the Forward Feature
Selection approach depends on the selected machine
learning method, which complicates the definition of
feature selection. On the other hand, Forward Feature
Selection is a required step in statistical measures
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and can help to identify non-obvious features that
are selected across multiple machine learning methods,
as well as defining the initial number of the features
for analysis. So, statistical measures can be a more
valuable approach for selecting features in the task of
identifying pain-related markers of newborns, but may
also be improved using Forward Feature Selection.

In a task of classification of EEG signals containing
painful event and those without painful event it was
noted the high level of errors in case of using the full set
of data without separating a subset of “mid pain level”
(PIPP scores from 6 to 12) and “high pain level” (PIPP
scores higher than 12) groups of signals containing
painful events and “low pain level” (PIPP score from
0 to 5) group of signals without painful events which
may be related to the data collection methods and may
be proved by analyzing stimulation information for the
signals not containing painful events where PIPP scores
were distributed across all pain levels. This shows the
need to collect more data from newborns for further
research.

Features selected using statistical measures and
trained machine learning models showed that features
that focus on band power features in alpha, beta,
and gamma frequency bands show good potential as
a pain marker for the pain detection of newborns. The
same analysis of the adult EEG signals showed a slight
correlation between features, where Cz and T7 can be
used to collect pain-related markers, and RMS and
standard deviation are valuable features.

Conclusions

This study analyzed the total amount of 3757
features derived from time and time-frequency doma-
ins with a focus on band power features in alpha,
beta, and gamma frequency bands for the two classi-
fication task: pre- and post-stimulus EEG segments
classification (painless and painful state of the patient)
and EEG signals classification containing painful event
(heel lance) and those without painful event (audio
control). A combined forward feature selection and
statistical measures approach was used to collect 20
features that can be named as pain-related markers of
newborns. Statistical measures of features is a valuable
approach for selecting features in the task of identifying
pain-related markers of newborns.

6 machine learning algorithms were trained with the
selected features in the two aforementioned classifica-
tion tasks. For the task of pre- and post-stimulus EEG
segments classification, the C-SVC algorithm showed
the best accuracy estimate of 93.5% with a pre-painful
event segment classification accuracy of 100% and a
post-painful event segment classification accuracy of
86.9%. For the task of EEG segments classification
containing painful event and without painful event,
after separating a subset of “mid pain level” (PIPP
scores from 6 to 12) and “high pain level” (PIPP scores

higher than 12) groups of signals containing painful
events and “low pain level” (PIPP score from 0 to 5)
group of signals without painful events, LD algorithm
showed the best accuracy estimate of 84% with 91.6%
of correctly identified EEG segments containing painful
event and 76.9% of correctly identified EEG segments
without painful event. The study shows that features
that focus on band power features in alpha, beta, and
gamma frequency bands show good perspective as a
pain marker for the pain detection of newborns.

In conclusion, this research demonstrates the
potential of using features that focus on band power
features in alpha, beta, and gamma frequency bands
and machine learning techniques for advancing pain
detection in neonates. However, the challenges associ-
ated with data availability highlight the need for conti-
nued efforts to develop larger, high-quality neonatal
EEG datasets. These efforts are crucial for improv-
ing pain diagnosis and management strategies in this
vulnerable patient population.
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Вибiр ознак для класифiкацiї
електричної активностi мозку у ново-
народжених у разi больових подiй

Бондарев В. Р., Iванько К. О., Попов А. О,

Карплюк Є. С., Корогод Н. С.

Розумiння механiзмiв болю та виявлення больових
подiй у новонароджених є критично важливим, оскiльки
новонародженi не мають здатностi до вербального спiл-
кування, щоб повiдомляти про свої больовi вiдчуття. Це
дослiдження зосереджено на аналiзi особливостей елек-
тричної активностi мозку новонароджених в часовiй та
часово-частотнiй областях з використанням електроен-
цефалографiчних (ЕЕГ) сигналiв, зареєстрованих пiд
час больових подiй, а саме забору кровi шляхом проколу
шкiри у новонароджених iз використанням п’яткового
ланцету. З метою автоматизованого виявлення больових
подiй у новонароджених було побудовано масив ознак
iз використанням широкого набору методiв розрахунку
ознак в часовiй та часо-частотнiй областях i застосо-
вано комбiнований пiдхiд до їх вiдбору, що включає
метод прямого вiдбору ознак та статистичнi оцiнки. Для
вирiшення задачi виявлення больових подiй за даними
аналiзу електричної активностi мозку новонароджених
було використано та порiвняно шiсть алгоритмiв ма-
шинного навчання, а саме: логiстичну регресiю, модель
на основi лiнiйного дискримiнантного аналiзу, метод
K-найближчих сусiдiв, метод опорних векторiв, випад-
ковий лiс дерев рiшень та наївний байєсiв класифiкатор.
Для задачi класифiкацiї сегментiв ЕЕГ як таких, що бу-
ли зафiксованi до та пiсля больового стимулу, модель на
основi методу опорних векторiв показала точнiсть 93,5%
правильно класифiкованих ЕЕГ сегментiв. Для задачi
класифiкацiї ЕЕГ-сигналiв, що вiдповiдають наявностi
такої больової подiї як прокол шкiри, та ЕЕГ сигналiв
у станi спокою, модель на основi лiнiйного дискримi-
нантного аналiзу показала найкращу оцiнку точностi у
84%, при цьому точнiсть класифiкацiї ЕЕГ сигналiв, що
вiдповiдають наявностi больової подiї становить 76,9%,
а точнiсть розпiзнавання ЕЕГ у станi спокою склала
91,6%. Результати демонструють потенцiал використа-
ння ознак, що зосередженi на спектральнiй потужностi
в альфа-, бета- та гамма-дiапазонах частот, та методiв
машинного навчання для покращення виявлення болю
у новонароджених.

Ключовi слова: електроенцефалографiя; больовi
маркери; новонародженi; машинне навчання; вибiр
ознак; класифiкацiя; точнiсть класифiкацiї; аналiз бiо-
сигналiв
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