в декартовой системы координат вносит ошибки измерения азимута $v_{\theta}(k)$. Соответственно СКО ошибки σ_x достигает максимального значения в области углов $\theta = [90^\circ, 270^\circ]$, а СКО ошибки σ_y - в области углов $\theta = [0^\circ, 180^\circ]$. С увеличением дальности до цели СКО ошибок определения координат цели σ_x, σ_y увеличиваются. При этом характер их изменения при рассмотренном положении приемной и передающей подсистем сохраняется прежним. Как следует из рис.2г, существует значительная корреляция между ошибками измерения в декартовой системе координат. Минимальные значения корреляции ошибок достигается в области углов $\theta = [0^\circ, 90^\circ, 180^\circ, 270^\circ]$. Это обусловлено тем, что основной вклад в ошибки измерения по осям декартовой системы координат вносят различные ошибки $v_{\theta}(k), \Delta_u(k)$, которые являются независимыми.

Ошибки определения координат цели в декартовой системе координат нестационарные и являются функциями ее сферических координат. С увеличением дальности до цели СКО ошибок определения координат цели увеличиваются, при этом основной вклад вносят ошибки измерения угловых координат. Существует значительная корреляция между ошибками измерения в декартовой системе координат, что следует учитывать при разработке алгоритмов вторичной обработки радиолокационной информации.

Литература

- 1. Кондратьев В. С., Котов А. Ф. .Марков Л. Н. Многопозиционные радиотехнические системы. М.: Радио и связь, 1986. -397 с.
- 2. Тихонов В.И. Статистическая радиотехника. М.: Радио и связь, 1982. -624 с.

Ключові слова: радіолокація, точність радіолокації, Доценко Д.І., Жук С.Я. Dotcenko D.I., Zuk S.J. Точносні характеристики двохпозиційної Precision characteristics of two-position радіолокаційної системи в декартовій radar station in Cartesian coordinate sysсистемі координат tem Отримані аналітичні залежності дисперсій Two-position radar station is examined. Anaта взаємних кореляцій похибок вимірів lytic expressions for dispersion and inter-

двохпозиційної радіолокаційної системи ycorrelation of measurement errors in Cartesian декартовій системі координат; для прикла-coordinate system are obtained. For example ду виконано їх розрахунок і аналіз.

УДК 621.391:621.387

ІДЕНТИФІКАЦІЯ α-ЧАСТИНОК ТА γ-КВАНТІВ ЗА ФОРМОЮ ІМПУЛЬСІВ СЦИНТИЛЯЦІЙНОГО СПАЛАХУ

Корнага В.І., Головін В.А.

Розглянуто методи виявлення та розрізнення сцинтиляційних спалахів α-частинок та γ-квантів за формою імпульсів в експериментальних дослідженнях структури ядер та механізмів ядерних реакцій.

В експерименті з дослідження структури ядер і механізмів ядерних реакцій необхідно не тільки вимірювати енергію частинок, але і ідентифікува-

ти їх. Для дослідження імпульсних сигналів від сцинтиляційного спалаху використовуються цифрові методи обробки. Імпульсні сигнали які генеруються сцинтиляційним кристалом енергетично слабкі, зашумлені. В процесі підсилення аналогових сигналів фотоелектронним помножувачем рівень шуму збільшується. Обробка сигналу складається з двох етапів. Виділення сигналу з шуму та ідентифікація форми сигналів

Теоретичні викладки

Для виділення сигналу з шуму та ідентифікації форми використовуємо методи оптимальної фільтрації. Щоб застосувати той чи інший метод обробки потрібно мати апріорну інформацію про форми сигналів α -частинок та γ -квантів. Реперна форма сигналів визначається опроміненням сцинтиляційного кристала відомими джерелами і усередненням отриманих імпульсів. Якщо відома форма вхідного імпульсу, то процедура виявлення сигналу зводиться до обчислення відношення правдоподібності і порівняння з відповідним пороговим значенням. При гіпотезі що на вхід прийшов сигнал з шумом його кореляція буде в середньому більша ніж кореляція з шумом. Ця обставина і використовується при виявлені. Пороговий рівень залежить від вибору критерію виявлення.

Для розрізнення двох різних, але близьких за формою сигналів, достатньо обчислити єдину кореляцію з різницевим сигналом, а рівень та знак коефіцієнта кореляції визначає ймовірність сигналу $s_1(t)$ або $s_2(t)$:

сигнал, H_1, H_2 -гіпотези. Нормоване значення взаємної кореляції двох цифрових сигналів $x_1(n)$ та $x_2(n)$ які містять по N відліків визначаємо як

$$r_{12} = \frac{1}{N} \sum_{n=0}^{N-1} x_1(n) x_2(n)$$
(1)

Для нормування амплітуди імпульсів, (1) ділять на коефіцієнт

$$\frac{1}{N} \cdot \left(\sum_{n=0}^{N-1} x_1^2(n) \cdot \sum_{n=0}^{N-1} x_2^2(n) \right)^{1/2}$$
(2)
Використовуючи (1), (2) отримаємо $r_{12} = \frac{\frac{1}{N} \sum_{n=0}^{N-1} x_1(n) x_2(n)}{1 \left(\sum_{n=0}^{N-1} x_2(n) \sum_{n=0}^{N-1} x_2(n) \right)^{1/2}}.$

 $\frac{-1}{N} \left(\sum_{n=0}^{\infty} x_1^2(n) \sum_{n=0}^{\infty} x_2^2(n) \right)$ При ідентифікації близьких за формою сигналів методами оптимальної фільтрації [2], для кожного сигналу обчислюється параметр форми: $SI = \frac{\sum f(t_k) \cdot P(t)}{\sum f(t_k)}, \text{ де } f(t_k) - оцифрована амплітуда імпульсу (в момент часу)}$

 t_k); P(t) - вагова функція - $P(t) = \frac{f_{\alpha}(t) - f_{\gamma}(t)}{f_{\alpha}(t) + f_{\gamma}(t)}$, $f_{\alpha}(t)$ і $f_{\gamma}(t)$ - реперні форми

імпульсів для а частинок та ү-квантів. Таким чином, міра якості $FOM = \frac{|SI_{\alpha} - SI_{\gamma}|}{\sqrt{\delta_{\alpha}^2 + \delta_{\gamma}^2}}$, де δ_{α} і δ_{γ} відповідні стандартні відхилення

Отримані результати

Виділення імпульсів виконувалося за критеріями перевищення порогового рівня амплітудою та енергією сигналу. Реперні форми сигналів отримані опромінюванням сцинтиляційного кристала відомими джерелами і усередненням отриманих імпульсів. Було усереднено 4000 імпульсів по альфа і гамма частинках з кількістю відліків на імпульс N=1500. Форму вхідного сигналу з амплітудою A показано на рис.1, а реперних сигналів на рис.2, розподіл індикатора форми для γ -квантів та α -частинок - на рис.3. Результати ідентифікації форми імпульсів наведені в табл.

		таблици
Алгоритм	Розділення по α, %	Розділення по ү, %
Взаємної кореляції (2)	99,12	95,77
Коефіцієнт взаємної кореляції (4)	99,68	99,52
Метод оптимального фільтра (5)	99,99	99,1

Запропоновані алгоритми дають можливість ідентифікувати γ-кванти та α-частинки за формою імпульсів сцинтиляційного спалаху. Алгоритми мають різні обчислювальні затрати, що дає можливість вибору алгоритму для обробки сигналів в реальному часу в залежності від швидкодії апаратних пристроїв.

Література

1. Айфичер Э., Джервис Б. Цифровая оброботка сигналов: практический подход, 2-е издание. Пер. с англ. - М.: «Вильямс», 2004

2. Gatti E., Martini D.E. Nuclear Electronics. (IAEA, 1962) 265 FAD

Ключові слова: сцинтиляція, ідентифікація форми імпульсу, оптимальний фільтрКорнага В.И., Головин В.А.Kornaga V.I., Golovin V.A.Идентификация α- частиц и γ- квантов по Identification alpha and gamma quantum at
форме импульсов сцинтилляционных the pulse shape of the scintillates splash
вспышекВспышекThe methods of different scintillates splash al-
рассмотрены методы разделения сцинтилля-
раделения сцинтиля-
ра and gamma quantum at the pulse shape
ционных вспышек α- частиц и γ- квантов по
have been considered in experiment researches
форме импульсов в исследованиях стру-
оf the core's structure and mechanisms of the
ктуры ядер и механизмов ядерных реакций.

Таблина