2. Ян И. Нелинейные согласованные фильтры для анализа различий // Радиоэлектроника.—1999. №6. — С.51-58. (Изв.высш.учеб.заведений).

3. Рыбин А.И. Нормализация дискретных ортогональных преобразований тестовым сигналом//Радиоэлектроника. 2004. №7. С.39-46. (Изв. высш. учеб. заведений).

- Рыбин А.И., Григоренко Е.Г. Алгоритм подстройки дискретного ортогонального преобразования под тестовый сигнал // Вісник НТУУ "КПІ". Серія Приладобудування. – 2004. – №27. – С.122-128.
- Рибін О.І., Шарпан О.Б. Діагностичні можливості процедури нормалізації ортогональних функцій при аналізі пульсограм // Вісник ЖДТУ. Технічні науки. – 2004. – т.1. – №4. – С.144-149.
- Рибін О.І., Сакалош Т.В., Шарпан О.Б. Аналіз пульсограм на базі процедури нормалізації оргогональних перетворень REX//Наукові вісті НТУУ "КПІ". 2005. №4. С.25-33.
- Рыбин А.И., Шарпан О.Б., Григоренко Е.Г., Сакалош Т.В. Коэффициенты трансформант нормализованных ортогональных преобразований и диагностика пульсогоамм//Вісник НТУУ "КПІ". Придадобудування, 2005. Вип. 30. С. 148-156
- грамм//Вісник НТУУ "КПІ". Приладобудування. 2005. Вип. 30. С.148-156
 8. Рибін О.І., Данилевська В.Г. Погоджена фільтрація на базі нормалізації ортогональних перетворень // Вісник НТУУ "КПІ". Радіотехніка. Радіоапаратобудування. 2007. Вип. 35. С.15-20.
- 9. Данилевська В.Г., Рибін О.І., Шарпан О.Б. Особливості і можливості діагностики за нормалізованим перетворенням // Электроника и связь. 2006. №2.С.49-54.
- 10. Рибін О.І., Мельник А.Д. Погоджена фільтрація сигналів при зміні масштабу їх аргументів на базі нормалізованих вейвлет-функцій // Вісник НТУУ "КПІ". Серія Радіотехніка. Радіоапаратобудування. 2007. Вип.34. С.18-24.
- Мельник А.Д., Рибін О.І. Нормалізація тестового сигналу зі збереженням еквілистантного кроку дискретизації // Вісник НТУУ "КПІ". Радіотехніка. Радіоапаратобудування. 2007. Вип. 34. С.24-29.
- Мельник А.Д., Рыбин А.И. Нормализация эталонного сигнала с постоянным шагом дискретизации // Радиоэлектроника. – 2008. – №1. – С.71-75 (Изв. вузов.).
- 13. Рыбин А.И., Мельник А.Д. Согласованная нормализованная фильтрация сигналов // Радиоэлектроника. 2008. № 2. С.77-80 (Изв. высш. учеб. заведений).
- Мельник А.Д., Рыбин А.И. Согласованная вейвлет-фильтрация сигналов с измененным масштабом // Радиоэлектроника. 2008. – № 3. – С.76-80 (Изв. вузов).
- Продеус А.Н., Захарова Е.Н. Экспертные оценки в медицине. К.:ВЕК+, 1998. 320с.
 Абакумов В.Г., Рибін О.І., Сватош Й. Біомедичні сигнали. Генезис, обробка, моніторинг. К.: Нора-прінт, 2001. 516с.

Ключові слова: класифікація сигналів, звукові сигнали, обробка сигналів

Рыбин А.И., Мельник А.Д. Rybin O.I., Melnik A.D.

Алгоритм классификации звуковых Algorithm of classification of sound sigсигналов

Предложен алгоритм и классификаторы The algorithm and qualifiers for identificaидентификации звуковых сигналов, pa-tion of sound signals is offered. The work бота которых проиллострирована наоf qualifiers illustrated on an example of примере распознавания звуков "a","o","y" recognition of sounds "a","o","y".

УДК 621.372.061

МОДИФИКАЦИЯ МЕТОДА РЕАЛИЗАЦИИ ПАСИВНОГО ДВУХПОЛЮСНИКА С ПОТЕРЯМИ ПО ФОСТЕРУ.

Ястребов Н.И.

Предложена методика реализации двухполюсника с потерями по Фостеру, позволяющая повысить формализацию решения и значительно упростить математические выкладки, по сравнению с методом Бруне.

Известно, что синтез пассивного двухполюсника по Фостеру сводится к разложению входной схемной функции F(p) (Z(p) – входного сопротив-

ления или Y(p) — входной проводимости), представляющую отношение полиномов комплексной переменной p, на сумму простейших дробей, каждой из которых ставится в соответствие схемотехнический аналог [1,2,3]. В курсах по теории цепей обычно рассматриваются двухлюлюсники без потерь или двухлюлюсники с потерями, у которых полюсы являются отрицательными вещественными числами или мнимыми (при этом пара мнимых корней - сопряженные числа $\pm j\omega_i$). В основном это связано с тем, что канонический двухлюлюсник с комплексными полюсами типа $-\alpha_i \pm j\omega_i$ не всегда может быть реализован колебательным контуром с потерями.

Исторически сложилось так, что сначала метод Фостера был ориентирован на синтез реактивных двухполюсников. При этом $F(p) = A_{\infty}p + \frac{A_0}{p} + \sum_i \frac{D_i p}{p^2 + \omega_i^2}$. Первое слагаемое $A_{\infty}p$ этой суммы появляется в том случае, если степень полинома числителя на единицу больше степени полинома знаменателя. Слагаемое $\frac{A_0}{p}$ соответствует полюсу, равному нулю. Так как коэффициенты полиномов функции F(p) больше нуля, то A_{∞} и A_0 больше нуля. Слагаемые типа $\frac{D_i p}{p^2 + \omega_i^2}$ соответствуют паре мнимых корней (полюсов) $\pm j\,\omega_i$ и реализуются каноническими колебательными контурами. Доказано, что коэффициенты D_i для положительной вещественной функции (ПВФ) всегда вещественны и больше нуля. Следовательно, если полюсы F(p) известны, то реализация реактивного двухполюсника по Фостеру не вызывает проблем.

У двухполюсника с потерями некоторые полюсы — отрицательные вещественные числа: $p_i = -\sigma_i$. В этом случае, при непосредственном разложении $F\left(p\right)$ с помощью вычетов, появляются слагаемые вида $\frac{A_i}{p+\sigma_i}$. Коэффициенты A_i могут получаться как положительными, так и отрицательными, что в общем случае не позволит реализовать приведенную простейшую дробь элементами R, L, C. Для решения указанной задачи предлагается метод Бруне [1,3], который характеризуется значительным объемом вычислений.

Ниже приводится математический прием, позволяющий значительно упростить решение проблемы отрицательных коэффициентов и более формализовать реализацию по Фостеру.

Для определенности, в качестве входной функции F(p) выберем входное сопротивление Z(p). С учетом различия степеней полинома чис-

лителя и знаменателя на единицу, на основании теоремы разложения [4] имеем: $Z(p) = A_{\infty}p + R + \sum_i \frac{A_i}{p-p_i}$.

Схемотехнические аналоги.

1. Слагаемое $A_{\infty}p$ соответствует индуктивности L, и будет присутствовать в том случае, когда степень полинома числителя n на единицу больше степени полинома знаменателя m: $A_{\infty}p \to L = A_{\infty} = \frac{a_n}{b_m} \Big(npu \ n-m=1 \Big)$.

Так как $a_n > 0$ и $b_m > 0$, то и L > 0. Символ бесконечности в нижнем индексе указывает, что полюс находится в бесконечности.

- 2. Второе слагаемое без p есть сопротивление R (поэтому так его и обозначили).
- 3. Слагаемые вида $\frac{A_i}{p-p_i}$ могут быть представлены разными схемотехническими аналогами в зависимости от вида полюсов p_i .

Для пары мнимых сопряженных полюсов имеем: $\begin{cases} p_i = jw_i \to A_i \\ p_{i+1} = -jw_i \to A_{i+1} = \overline{A_i} \end{cases}.$ При этом A_i и сопряженное ему \overline{A} вещественны и больше нуля, так как вычеты ПВФ в мнимых корнях вещественные и положительные. Следовательно $A_i = \overline{A_i}$. Два слагаемых с такими сопряженными корнями можно объединить в одно $\frac{A_i}{p-jw_i} + \frac{A_i}{p+jw_i} = \frac{D_i \cdot p}{p^2 + w_i^2}.$ Его схемотехнический аналог — параллельный колебательный контур без потерь. Для вещественных отрицательных полюсов $p_i = -\sigma_i$ получаем $\frac{A_i}{p-p_i} = \frac{A_i}{p+\sigma_i}.$ В общем случае A_i может быть положительным или от-

рицательным вещественным числом. При $A_i>0$, дробь $\frac{A_i}{p+\sigma_i}$ реализуется параллельной RC-цепочкой. Если $\sigma_i=0$, то схемотехническим аналогом будет емкость, со значением C, равным $\frac{1}{A_i}$. Если A_i отрицательно, то слагаемое с отрицательным коэффициентом складываем с R:

$$\frac{-Ai}{p+\sigma_i} + R = \frac{pR + (R \cdot \sigma_i - Ai)}{p+\sigma_i} = \frac{pR}{p+\sigma_i} + \frac{(R \cdot \sigma_i - Ai)}{p+\sigma_i}$$
(1)

Первое слагаемое реализуется параллельной RL цепочкой, а второе, если числитель больше нуля, - параллельной RC цепочкой.

лее формальный подход к реализации двухполюсника по Фостеру на основании теоремы разложения.

Рассмотрим применение предложенного метода для решения приведенного в [3] примера $Z(p) = \frac{p^5 + 6p^4 + 6p^3 + 21p^2 + 4p + 10}{p(p+j)(p-j)(p+5)}$.

С помощью теоремы разложения раскладываем Z(p) на простейшие дроби: $Z(p) = 1p + 1 + \frac{2}{p} + \frac{p}{p^2 + 1} - \frac{3}{p + 5}$. Сопротивление R, равное 1 записываем в виде суммы $\frac{2}{5} + \frac{3}{5}$ и складываем с дробью с отрицательным коэффициентом:

$$1 + \frac{-3}{p+5} = \frac{2}{5} + \frac{3}{5} + \frac{-3}{p+5} = \frac{2}{5} + \frac{\frac{3}{5}p + \frac{3}{5} \cdot 5 - 3}{p+5} = \frac{2}{5} + \frac{\frac{3}{5}p}{p+5}$$

Окончательно получаем: $Z(p) = 1p + \frac{2}{5} + \frac{2}{p} + \frac{p}{p^2 + 1} + \frac{\frac{3}{5}p}{p+5}$. Анало-

гичный результат дает метод Бруне.

Литература

12

1. Гиллемин Э.А.. Синтез пассивных цепей. М: Связь, 1970, 720 с.

 Атабеков Г.И. Основы теории цепей. 2006. 432 с. М. «УРСС».
 Основы теории цепей. // Г. В. Зевеке и др. М.: Энергия, 1975.
 Сигорский В.П., Петренко А.И. Основы теории электронных схем: Учеб. пособие для вузов. - К.:Вища школа, 1971. - 568 с.

Ключові слова: двополюсник, синтез двополюсника, метод Фостера, метод Бруне Ястребов М.І. Yastrebov M.I. Моднфікація методу реалізації пасивно-Modification of the method realization of the го двополюсника з втратами за Фосте-passive one port with dissipation by Foster ром
Противной п розв'язання й значно спрошує математичні mathematical calculations, in comparison with викладки в порівнянні з методом Бруне Brune method.