РАДІОЕЛЕКТРОНІКА БІОМЕДИЧНИХ ТЕХНОЛОГІЙ

УДК 621.372.061

КЛАСИФІКАЦІЯ СТАНУ СУДИННОЇ СИСТЕМИ ЗА ГРАФОЕЛЕМЕНТАМИ ПУЛЬСОВОЇ ХВИЛІ

Рибін О.І., Ніжебецька Ю.Х., Пляцко Н.С.

Запропоновано алгоритм класифікації та проілюстровано створення класифікаторів для трьох класів пульсограм.

Вступ. Постановка задачі

Класифікація (розпізнавання) сигналів має велике значення при розв'язанні задач технічної та медичної діагностики. Останнім часом одним із найбільш популярних методів, як призначення класів (кластерів), так і екстракції ознак є перетворення Карунена-Лоєва, яке базується на ортогональному розкладанні кореляційних матриць досліджуваних сигналів. При цьому для дискретного (з еквідистантним кроком дискретизації) сигналу деякого класу знаходять вектор-стовпець відліків математичних очікувань $\overline{m} = [m_1, m_2, ..., m_N]^T$, де N – формат дискретного сигналу , T – знак транспонування. Кореляційну матрицю обчислюють як середній добуток центрованих відхилень $\overline{\Delta x} = \overline{x} - \overline{m}$ у вигляді

$$\overline{Cor} = \frac{1}{M} \sum_{i=1}^{M} \overline{\Delta x} \cdot \overline{\Delta x}^{T}$$
(1)

де М – кількість "періодів" (репетицій) сигналу деякого класу в пачці.

Далі одержану кореляційну матрицю розкладають за власними значеннями та власними векторами:

$$\overline{Cor} = \overline{\Pi\lambda\Pi}^{T}$$
(2)

де $\overline{\lambda}$ – діагональна матриця власних значень, тобто кожне з N власних значень λ_i знаходяться з рівняння $\left|\overline{Cor} - \lambda \cdot \overline{\overline{E}}\right|_{\lambda = \lambda_i} \equiv 0$, де $\overline{\overline{E}}$ – одинична матриця; |...| – позначення визначника.

Власні вектори $\overline{\pi_i}$ знаходяться за рівнянням $\left[\overline{Cor} - \lambda_i \overline{E}\right] \overline{\pi_i} = \overline{0}$, де $\overline{0}$ – стовпець нулів. Тоді в (2) $\overline{\overline{\Pi}}$ – квадратна матриця стовпців $\overline{\pi_i}$, а $\overline{\overline{\Pi}}^T$ – квадратна матриця рядків $\overline{\pi_i}^T$. Розклад (2) дозволяє записати зворотну матрицю \overline{Cor}^{-1} у вигляді

$$\overline{Cor}^{-1} = \overline{\Pi\lambda}^{-1} \overline{\Pi}^{T}$$
(3)

Таким чином, якщо матриця λ містить у собі нульові значення λ, (мат-

104 Вісник Національного технічного університету України "КПІ" Серія – Радіотехніка. Радіоапаратобудування.-2008.-№36 риця \overline{Cor} є позитивно визначеною, тобто її корені – це завжди позитивні числа або нулі), то зворотна матриця в (3) не існує. Розклад (2) є маркером визначеності задачі обернення матриці \overline{Cor} . Якщо кореляційна матриця містить надлишкову інформацію, то деякі з її рядків є лінійною комбінацією попередніх, тобто ці рядки (лінійні комбінації) несуть в собі надлишкову інформацію. Номери таких рядків відповідають відлікам, які є зайвими і їх відкидання, не зменшуючи кількості інформації про сигнал, робить задачу обернення коректною. Виявивши, як це було показано вище, надлишкові відліки, можна знову сформувати матрицю \overline{Cor} за алгоритмом (1) і, одержавши нові значення λ_i (але вже всі ненульові) реалізувати процедуру обернення матриці \overline{Cor} (2). Незручність такого підходу полягає в тому, що дискретизація сигналу вже не є сквідистантною. До того ж, для сигналів з різних класів надлишкові відліки матимуть різні номери, а їх кількість там буде різною. Це призводить до того, що порядки K_i матриць \overline{Cor} для різних класів будуть різними, що дуже ускладнить процедуру класифікації.

Процедура класифікації за методом ортогонального розкладу кореляційних матриць полягає в обчисленні добутків

$$D_{1} = \Delta \tilde{x}_{1}^{T} \overline{Cor_{1}^{-1}} \Delta \tilde{x}_{1}; D_{2} = \Delta \tilde{x}_{2}^{T} \overline{Cor_{2}^{-1}} \Delta \tilde{x}_{2}; \dots; D_{\alpha} = \Delta \tilde{x}_{\alpha}^{T} \overline{Cor_{\alpha}^{-1}} \Delta \tilde{x}_{\alpha},$$
(4)

де $\Delta \tilde{x}_i = \tilde{x} - m_i$, тобто стовпець відхилень дискретних відліків досліджуваного сигналу від дискретних відліків математичного очікування сигналів *i*го класу; $\overline{Cor_i^{-1}}$ – обернена кореляційна матриця сигналів *i*-го класу.

Якщо $D_i < D_{0i}$ (тут D_{0i} – норіг, емпірично встановлений для кожного *i*го класу з групи класів), то сигнал \tilde{x} належить до *i*-го класу. Якщо $D_i > D_{0i}$, то сигнал до цього класу не належить. Зрозуміло, що реалізація формул (4) вимагає однакових форматів матриць $\Delta \tilde{x}_i$, $\overline{Cor_i^{-1}}$ та тотожності номерів відліків для всіх α класів.

Опис запропонованого методу

Незручності, пов'язані з реалізацією описаного вище класичного методу ортогонального розкладання кореляційної матриці для її обернення і підрахування дискримінантних чисел D_t можна легко обійти, використовуючи інший критерій для оцінки "близькості" досліджуваного сигналу до кожного з поданих класів.

Для пояснення методу перепишемо рівняння (2) у вигляді:

$$\overline{\Pi}^T \overline{Cor\Pi} = \overline{\lambda}$$
(5)

105

оскільки $\overline{\Pi}^T \overline{\Pi} = \overline{\Pi} \overline{\Pi}^T = \overline{E}$. Тобто добуток кореляційної матриці \overline{Cor} на матриці власних векторів дає діагональну матрицю власних значень.

Вісник Національного технічного університету України "КШ" Серія – Радіотехніка. Радіоапаратобудування.-2008.-№36 Оскільки в (4) обчислюються добутки поточних відхилень $\Delta \tilde{x}_i$ та кореляційної матриці, в (5) замість матриці \overline{Cor} підставимо добутки $Co\tilde{r}_i = \Delta \tilde{x}_i \Delta \tilde{x}_i^T$, де сенс $\Delta \tilde{x}_i$ той самий, що й у (4). Матрицю $Co\tilde{r}_i$ назвемо матрицею миттєвих відхилень (на відміну від матриці \overline{Cor}_i , яка є матрицею усереднених добутків відхилень і до того ж тільки для свого *i*-го класу).

Далі обчислимо добутки (5) для всіх α класів:

$$\overline{\Pi}_{1}^{T} Co\tilde{r}_{1} \overline{\Pi}_{1} = \tilde{\lambda}_{1}; \ \overline{\Pi}_{2}^{T} Co\tilde{r}_{2} \overline{\Pi}_{2} = \tilde{\lambda}_{2}; \ \dots; \ \overline{\Pi}_{\alpha}^{T} Co\tilde{r}_{\alpha} \overline{\Pi}_{\alpha} = \tilde{\lambda}_{\alpha}, \tag{6}$$

де Π_i — матриці власних векторів *i*-го класу, $Co\tilde{r_i}$ - матриця миттєвих відхилень досліджуваного сигналу \tilde{x} від математичного очікування $\overline{m_i}$ *i*-го кла \tilde{x} належить до *i*-го класу, тоді дискримінантне число

$$\delta_i = \left| \tilde{\lambda}_i - \overline{\lambda}_i \right| \tag{7}$$

буде малим, в іншому разі — великим. Тут $\|..\|$ означає норму відхилень, тобто або корінь квадратний з суми квадратів, або суму модулів, або найбільше з чисел, одержаних відніманням діагональної матриці $\overline{\lambda}_i$ від недіагональної матриці $\overline{\lambda}_i$.

Ілюстрація реалізації запропонованого методу

Для ілюстрації можливостей і властивостей класифікації було обрано три різних пульсограми того ж самого пацієнта при різних станах судинної системи (до куріння – сигнал №1, після куріння – сигнал №2, через 5 хвилин після куріння – сигнал №3).

Математичні очікування сигналів (32 відліки, періоди нормовані) для сигналів №№1, 2, 3 наведено на рис.1 а, б, в відповідно.

Рис.1. Математичні очікування періоду пульсограми пацієнта для трьох станів його судинної системи

Для усіх цих сигналів було сформовано кореляційні матриці (1) та реалізовано їх розклад згідно з (2).

Далі, згідно з (6), (7) для кожної репетиції з і-го класу було оцінене зна-

Вісник Національного технічного університету України "КПІ" Серія – Радіотехніка. Радіоапаратобудування.-2008.-№36

106

чення дискримінантного числа по матрицям Π_i, λ_i того ж самого класу. Результати обчислень для 20 репетицій наведено в табл. 1.

Таблиця 1

KJACY S	1	2	3	4	5	6	Z	8	9	10
1	0.252	0.191	0.556	0.434	0.372	0.293	0.212	0.176	0.186	0.081
2	0.325	0.667	0.411	0.349	0.432	0.534	0.19	0.337	0.407	0.494
3	1.131	0.885	0.364	0.199	0.185	0.621	0.86	0.428	0.146	0.151
No										
KJIACY S	11	12	13	:14	15	16	.17	18	19	20
1	0.103	0.143	0.122	0.134	0.083	0.122	0.164	0.054	0.249	0.155
2	0.303	0.17	0.173	1.325	0.154	15.997	1.191	0.461	0.186	0.44
3	0.723	0.38	0.2	0.112	0.223	0.9	15.421	0.289	0.442	4.249

Середні значення дискримінантних чисел становлять $\delta_{cepi} = 0.204$; $\delta_{cep2} = 1.227$; $\delta_{cep3} = 1.395$. Миттєві прирощення репетицій сигналів №№ 2, 3, але обчислені для інших класів класу №1 дають значення, наведені в табл.2. Таблиця 2

класу бi	1	2	9	4	- 5	6	7	· 8	9	10
2	10.8	22.136	16.757	14.424	12.929	13.672	5.37	3.3	5.77	11.128
3	42.552	35.416	17.195	15.527	12.929	22.229	21.186	18.276	17.616	14.958
No										

класу б _i	11	12	13	-14	1.5	10	. 17	18	19	20
2	11.441	6.123	12.929	44.888	13.179	333.232	30.166	4.495	6,196	6.294
3	27.294	2.264	10.829	9.846	18.615	18.006	356.928	2.368	1.719	60.1

Середні значення цих дискримінантних чисел складають $\delta_{cep12} = 29.261$; $\delta_{cep13} = 36.293$. З таблиць видно, що деякі дискримінантні числа мають відносно великі значення, що пояснюється нестабільністю умов зчитування пульсограм.

Висновки

Запропонований метод класифікації є чутливим до змін графоелементів хоча б для розглянутого прикладу аналізу пульсограм. В запропонованому критерії відсутня необхідність в оберненні кореляційної матриці, що знімає незручності, пов'язані з різними номерами надлишкових відліків для різних класів та неоднаковим форматом матриць при обчисленнях.

Література

Абакумов В.Г., Рибін О.І., Сватош Й. Біомедичні сигнали. Генезис, обробка, моніторинг. – К.: Нора-принт, 2001. – 516с.

Ключові слова: пульсограма, сосудиста система, аналіз пульсу

Нижебепкая Ю.Х., Пляпко Н.С., Рыбин А.И. Nizhebetska Y.Kh., Plyatsko N.S., Rybin O.I. Классификация состояния сосудистой сис-Classification of the state of the vascular sysтемы по графозлементам пульсовой волны tem on graph element of the pulse wave. Предложен алгоритм классификации и про-The algorithm of classification is offered and иллюстрировано создание классификаторовстеаtion of classificatory is illustrated for three для трёх классов пульсограмм.

> Вісник Національного технічного університету України "КІІІ" Серія – Радіотехніка. Радіоапаратобудування.-2008.-№36