УДК 621.372

РЕЗОНАНСНА ФІЛЬТРАЦІЯ ДВОФАЗНИМИ РЕЗОНАТОРАМИ

Водолазька М. В., аспірантка; Толстенкова А. П., магістрантка; Нелін Є. А., д.т.н., професор Національний технічний університет України «Київський політехнічний інститут», м. Київ, Україна, for_me88@ukr.net, ye.nelin@gmail.com

RESONANCE FILTRATION BY TWO-PHASE RESONATORS

Tolstenkova A. P., undergraduate student; Vodolazka M. V., postgraduate student; Nelin E. A., Doc. Of Sci (Technics), Professor National Technical University of Ukraine «Kyiv Polytechnic Institute», Kyiv, Ukraine

Вступ

Резонансна спектральна фільтрація має виключне значення для багатьох застосувань. Високодобротні резонатори необхідні для мазерів і лазерів, їх використовують в фільтрах, дискримінаторах, високочутливих сенсорах, в метрології, в прецизійних фізичних експериментах [1]. За допомогою високодобротних оптичних мікрорезонаторів виконано фундаментальні експерименти по спостереженню ефектів взаємодії поодиноких атомів і фотонів [2], що відкриває можливість визначення речовини на рівні поодиноких атомів і молекул [3]. З цим напрямком пов'язаний розвиток застосувань зі значними очікуваннями: квантові комп'ютери, квантова криптографія та квантова телепортація [4–6]. Однією з основних вимог для спостереження квантових ефектів є ізоляція системи від зовнішнього класичного світу і зменшення в ній дисипації для уповільнення розпаду станів (декогеренції), що потребує відповідної добротності резонатора.

Технічні рішення резонансної фільтрації засновані на використанні резонатора Фабрі-Перо. В сучасних мікрорезонаторах відбивачі такого резонатора утворені кристалоподібними структурами (КС). Кристалоподібні структури, аналогічні природним кристалам, — однофазні, оскільки їх елементи мають однакову фазу коефіцієнта відбиття. В роботі [7] запропоновано двофазні КС, утворені елементами з протифазними коефіцієнтами відбиття.

Метою статті є дослідження особливостей резонансної фільтрації резонаторами на основі відбивачів з протифазними коефіцієнтами відбиття — двофазними резонаторами.

Однофазні і двофазні резонатори

Кристалоподібні структури складають основу пристроїв обробки сигналів нового покоління. У КС пропускання хвиль обумовлене резонансним

проходженням у дозволених зонах і тунелюванням у заборонених. Ці ефекти забезпечують гранично можливий діапазон управління хвилями: від повного пропускання до майже повного непропускання. У КС досягається висока локалізація поля. Підвищення локалізації поля відповідає підвищенню вибірності і є фундаментальною задачею для пристроїв обробки сигналів. Локальне порушення періодичності КС приводить до утворення моди електромагнітного поля, локалізованого всередині КС, з частотою, що знаходиться в забороненій зоні. Така дозволена мода називається мікрорезонаторною. Розташовані з обох боків дефекту частини КС можна розглядати як багатошарові дзеркала, що утворюють мікрорезонатор Фабрі-Перо.

Відповідно моделі Кроніга-Пенні кристал характеризується однофазною (для відбитих хвиль) потенціальною або імпедансною залежністю. При двофазній імпедансній залежності [7] частоти дозволених і заборонених зон зменшуються приблизно вдвічі порівняно з однофазною. Відповідно вдвічі зменшуються розміри структур і пристроїв на їх основі. Як і однофазну залежність, двофазну можна реалізувати в різних штучних структурах. Однофазну (single-phase) і двофазну (two-phase) КС, їх елементарні комірки і параметри позначимо буквами s і t.

Рис. 1. Імпедансні залежності КС і резонаторів: а — КСs, 1 і 2 — відбиті хвилі, *d* — період; б — КСt; в — s-резонатор, 1 і *Z* — нормовані імпеданси зовнішнього середовища і відбивача; г — t-резонатор.

На рис. 1, а і 1, б приведено імпедансні залежності для КСѕ і КСt. Імпедансний бар'єр і яма моделюють елементи КС, утворені хвильовими неоднорідностями. Хвильова неоднорідність характеризується значним впливом на падаючу хвилю, що відповідає високому коефіцієнту відбиття. Зсув фаз між хвилями 1 і 2 дорівнює $\varphi_d + \Delta \varphi_r$, де φ_d — подвоєний набіг фаз на відстані d; $\Delta \varphi_r$ — різниця фаз при відбитті. Оскільки в

кристалах і в КСѕ неоднорідності ідентичні з коефіцієнтами відбиття r однієї фази, то $\Delta \varphi_{rs} = 0$. Для суміжних неоднорідностей КСt $r_2 = -r_1$ і $\Delta \varphi_{rt} = \pi$. Таким чином, умови бреггівського відбиття в першій забороненій зоні КСѕ і КСt мають вигляд $\varphi_{ds} = 2\pi$ і $\varphi_{dt} = \pi$. З цих умов випливає, що бреггівська частота КСt у два рази менша.

Елементарна комірка КСs уявляє собою резонатор Фабрі-Перо (s-peзонатор) з резонаторною порожниною завдовжки $l = \lambda_0 / 2$, де λ_0 — довжина хвилі на частоті f_0 основного резонансу. Елементарна комірка КСt — t-резонатор з порожниною завдовжки $l = \lambda_0 / 4$.

Добротність резонатора зростає зі збільшенням довжини порожнини і коефіцієнта відбиття від відбивачів. У t-резонаторі порожнина менша, проте, це дозволяє розмістити додаткові відбивні шари, що збільшує коефіцієнт відбиття.

На рис. 1, в і 1, г показано імпедансні залежності для s- і t-резонаторів з

Рис. 2. Характеристики коефіцієнта проходження s- (1) і t-резонатора (2); (3) характеристика t-резонатора з корекцією структури. F=f/f0, Z=5, δl=0,95%.

імпедансів. Відбивач s-резонаторів з імпедансів. Відбивач s-резонатора шар завтовшки $\lambda_0/4$, а tрезонатора — шари завтовшки $\lambda_0/4$ і $\lambda_0/8$ з імпедансами Z i Z⁻¹.

На рис. 2 приведено характеристики s- i t-резонаторів однакової довжини. Добротність t-резонатора більша, але його резонансна частота дещо

зміщена відносно резонансної частоти s-резонатора. Для аналізу особливостей характеристики tрезонатора розглянемо амплітудно- і фазочастотну характеристики відби-

вачів s- і t-резонатора.

Амплітудно- і фазочастотна характеристики відбивачів резонаторів

Виходячи з [8], для добротності резонатора Фабрі-Перо маємо

$$Q = \alpha \beta$$
, 1)

де $\alpha = \pi$; $\beta = \arcsin^{-1}[(1-r^2)/2|r|]/2$, значення *r* дійсне і не залежить від частоти. Множник α дорівнює набігу фаз у резонаторі на частоті f_0 .

Оскільки для резонаторів, що розглядаються, Q >> 1, то $Z^2 >> 1$, $|r| \approx 1$ і $\beta = |r|/(1-r^2)$. З виразу $r = (Z_i - Z_l)/(Z_i + Z_l)$, де Z_i — вхідний імпеданс відбивача; Z_l — імпеданс порожнини, отримаємо

$$r_s \approx 1 - \frac{2}{Z^3}, \ |r_t| \approx 1 - \frac{4}{Z^4}.$$
 (2)

Таким чином,

$$\beta_s \approx \frac{Z^3}{4}, \quad \beta_t \approx \frac{Z^4}{8}.$$
 (3)

Рис. 3. Амплітудно-частотні характеристики коефіцієнтів відбиття відбивачів s- (1) і t-резонатора (2). Z=5.

При Z > 2 $r_t > r_s$ і $\beta_t > \beta_s$. Збільшення коефіцієнта відбиття відбивача t-резонатора приводить до збільшення добротності у Z/2 разів.

На рис. З приведено амплітудно-частотні характеристики коефіцієнтів відбиття відбивачів резонаторів. Відбивач t-резонатора має більш високий коефіцієнт відбиття. На частоті f_0 значення r_s і $|r_t|$ дорівнюють 0,984 і 0,994, що співпадає зі значеннями згідно (2). Максимум коефіцієнта ві-

На рис. 4 приведено фазо-

Звернемо увагу на такі їх

характеристики

відбивача відповідає більшій

добротності; 2) на відміну від

s-резонатора в t-резонаторі на

частоті f₀ фаза коефіцієнта від-

t-

особливості: 1) залежність фа-

зи від частоти приведе до підвищення добротності у порівнянні з (1), більш висока кру-

частотні характеристики кое-

фіцієнтів відбиття відбивача sрезонатора і лівого відбивача t-

резонатора.

тість

дбиття відбивача t-резонатора досягається на частоті 1,225 і дорівнює 0,995.

биття не нульова.

Фазочастотні характеристики правого і лівого відбивачів t-резонатора зв'язані співвідношенням:

$$\varphi_t' = \varphi_t + \pi, \tag{4}$$

що свідчить про протифазність відбивачів у діапазоні частот.

Покажемо, що резонансна частота t-резонатора зміщена внаслідок порушення умови балансу фаз на частоті f_0 .

Запишемо умову балансу фаз для t-резонатора:

$$\varphi_t + \varphi_t' + 2kl = 2\pi.$$

3 урахуванням (4) маємо:

$$\varphi_t + kl = \frac{\pi}{2}.$$
(5)

Резонансна частота t-резонатора F_{t0} має задовольняти (5). Враховуючи, що для t-резонатора $l = \lambda_0 / 4$, отримаємо

$$F_{t0} = 1 - \frac{2\varphi_t(F_{t0})}{\pi}.$$
 (6)

Виходячи з залежності 2 на рис. 4 та формули (6), маємо $F_{t0} = 1,00665$, що співпадає з резонансною частотою характеристики 2 на рис. 2.

Характеристики на рис. 4 можна апроксимувати формулами

$$\phi_s \approx \frac{\pi(F-1)}{Z^2}, \ \phi_t \approx \frac{\pi(F-1)}{Z} - \frac{1}{Z^{2,6}}.$$
(7)

Виходячи з формули для ϕ_t , отримаємо

$$F_{t0} \approx 1 - \frac{2}{\pi (Z+2)Z^{1,6}}.$$
 (8)

Згідно (8) $F_{t0} \approx 1,00693$; похибка дорівнює $3 \cdot 10^{-2}$ %.

Для резонаторів, що розглядаються, множник а у виразі (1) має враховувати не лише набіг фаз у резонаторі, але і частотну залежність фази коефіцієнта відбиття відбивача резонатора. Оскільки фаза прямо пропорційна частоті, величина а визначається співвідношенням $\alpha = \delta \varphi Q$, де $\delta \varphi$ — зсув фаз у смузі резонансу. З урахуванням частотної залежності фази коефіцієнта відбиття $\alpha = \alpha_l + \alpha_r$, де $\alpha_{l,r}$ — складові, обумовлені довжиною порожнини і фазочастотною залежністю коефіцієнта відбиття. Згідно (7) маємо $\alpha_{rs} \approx \pi / Z^2$ і $\alpha_{rt} \approx \pi / Z$. Оскільки $\alpha_{ls} = \pi$, $\alpha_{lt} = \pi/2$, а $Z^{-2} <<1$, отримаємо

$$\alpha_s \approx \pi, \quad \alpha_t \approx \frac{\pi(Z+2)}{2Z}.$$
(9)

В результаті підстановки (9) і (3) в (1) маємо

$$Q_s \approx \frac{\pi Z^3}{4}, \quad Q_t \approx \frac{\pi Z^3 (Z+2)}{16}, \quad q = \frac{Q_t}{Q_s} = \frac{Z+2}{4}.$$
 (10)

Значення Q_t , Q_s і q, розраховані з характеристик 1 і 2 на рис. 2, дорівнюють відповідно 184, 102 і 1,80, що добре узгоджується зі значеннями згідно (10): 172, 98 і 1,75.

Зі збільшенням Z від 3 до 10 значення q, згідно (10), збільшується від 1,25 до 3. При довільному числі $n \lambda_0/4$ -шарів відбивача $Q_s \approx \pi Z^{2n+1}/4$ і

Вісник Національного технічного університету України «КПІ» Серія — Радіотехніка. Радіоапаратобудування. — 2014. — №57 117 $Q_t \approx \pi (Z+2) Z^{2n+1} / 16$. Відношення *q* від *n* не залежить. Таким чином, у порівнянні з s-резонатором вибірність t-резонатора більш висока.

Корекція структури двофазного резонатора

Як видно з проведеного вище аналізу, зміщення частоти t-резонатора обумовлене порушенням умови балансу фаз внаслідок впливу фаз коефіцієнтів відбиття відбивачів t-резонатора. Для корекції зміщення резонансної частоти необхідно збільшити резонаторну порожнину на величину Δl . Оскільки розмір резонатора має залишитись незмінним, відповідно зменшимо товщину зовнішніх шарів t-резонатора на величину $\Delta l/2$.

Згідно (5) для $\delta l = \Delta l / l$ маємо

$$\delta l = -\frac{2\varphi_t(1)}{\pi}.$$
(11)

Виходячи з наближеної формули для ϕ_t з (7), отримаємо

$$\delta l \approx \frac{2}{\pi Z^{2,6}}.$$
(12)

Рис. 5. Точна (1) і наближена (2) залежності відносної величини корекції резонатор-ної порожнини t-резонатора.

При Z=5 згідно (11) і (12) маємо $\delta l = 0.95\%$ і $\delta l \approx 0.97\%$

На рис. 5 приведено точну і наближену залежності відносної величини корекції резонаторної порожнини від імпедансу. Необхідне для корекції значення δl доцільно наближено розрахувати згідно (12) і уточнити при розрахунку характеристики проходження резонатора. Характеристика 3 на рис. 2 відповідає скорегованій структурі резонатора. Значення Q_t і q, розраховані з характеристики, дорівнюють 180 і 1,77.

Висновки

Двофазні резонаторні структури забезпечують підвищення добротності у порівнянні з традиційними однофазними структурами. При заданих розмірах і діапазоні імпедансів зі збільшенням імпедансу шарів від 3 до 10 добротність двофазного резонатора більше добротності однофазного у 1,25...3 рази.

Перелік посилань

1. Городецкий М. Л. Основы теории оптических микрорезонаторов / М. Л. Городецкий. – М. : МГУ, 2010. – 203 с.

2. Kimble H. J. Strong interactions of single atoms and photons in cavity QED / H. J. Kimble // Physica Scripta. – 1998. – Vol. 76. – pp. 127-137.

3. Yoshie T. Optical microcavity: sensing down to single molecules and atoms / T. Yoshie, L. Tang, S-Y. Su // Sensors. – 2011. – Vol. 11, No. 2. – pp. 1972–1991.

4. Килин С. Я. Квантовая информация / С. Я. Килин // УФН. – 1999. – Т. 169, № 5. – С. 507-527.

5. Валиев К. А. Квантовые компьютеры и квантовые вычисления / К. А. Валиев // УФН. – 2005. – Т. 175, № 1. – С. 3–39.

6. Pathak A. Elements of quantum computation and quantum communication / A. Pathak. — CRC Press Taylor & Francis Group., 2013. – 340 p.

7. Назарько А. И. Двухфазный электромагнитный кристалл/ А. И. Назарько, Е. А. Нелин, В. И. Попсуй, Ю. Ф. Тимофеева // Письма в ЖТФ. – 2011. – Т. 37, №. 4. – С. 81–86.

8. Борн М. Основы оптики / М. Борн, Э. Вольф. – М. : Наука, 1970. – 586 с.

References

1. Gorodetskii M. L. (2010) *Osnovy teorii opticheskikh mikrorezonatorov* [Fundamentals of the theory of optical microcavities]. Moscow, MHU, 203 p.

2. Kimble H. J. (1998) Strong interactions of single atoms and photons in cavity QED. *Physica Scripta*, Vol. 76, pp. 127–137.

3. Yoshie T., Tang L. and Su S-Y. (2011) Optical microcavity: sensing down to single molecules and atoms. *Sensors*, Vol. 11, No. 2, pp. 1972–1991.

4. Kilin S. Ya. (1999) Quantum information. Phys. Usp., Vol. 42, no. 5, pp. 435-452.

5. Valiev K. A. (2005) Quantum computers and quantum computations. *Phys. Usp.*, Vol. 48, No. 1, pp. 1–36.

6. Pathak A. *Elements of quantum computation and quantum communication*. CRC Press Taylor & Francis, 2013, 340 p.

7. Nazarko A. I., Nelin E. A., Popsui V. I. and Timofeeva, Yu. F. (2011) Two-phase electromanetic crystal. *Technical Physics Letters*, Vol. 37, No. 2, pp. 185–187.

8. Born M., Vol'f E. Osnovy optiki [Principles of Optics]. Moscow, Nauka, 1970. 586 p.

Водолазька М. В., Толстенкова А. П., Нелін Є. А. **Резонансна фільтрація двофаз**ними резонаторами. Запропоновано резонатори на основі відбивачів з протифазними коефіцієнтами відбиття, названі в роботі двофазними. Розглянуто характеристики проходження двофазних резонаторів та традиційних однофазних. Для порівняння добротностей резонаторів та з'ясування причин зміщення характеристики двофазного резонатора проаналізовано частотні характеристики відбивачів резонаторів. З метою компенсації зміщення запропоновано корекцію структури двофазного резонатора. Показано, що при однакових розмірах і діапазоні імпедансів добротність двофазного резонатора в залежності від значення імпедансу в 1,25...3 рази вища у порівнянні з однофазним.

Ключові слова: резонансна фільтрація, кристалоподібна структура, резонатор Фабрі-Перо, двофазний резонатор.

Водолазская М. В., Толстенкова А. П., Нелин Е. А. **Резонансная фильтрация двухфазными резонаторами.** Предложены резонаторы на основе отражателей с противофазными коэффициентами отражения, названные в работе двухфазными. Ррассмотрены характеристики прохождения двухфазных резонаторов и традиционных однофазных. Для сравнения добротностей резонаторов и выяснения причин смещения характеристики двухфазного резонатора проанализированы частотные характеристики отражателей резонаторов. С целью компенсации смещения предложена коррекция структуры двухфазного резонатора. Показано, что при одинаковых размерах и диапазоне импедансов добротность двухфазного резонатора в зависимости от значения импеданса в 1,25...3 раза больше в сравнении с однофазным.

Ключевые слова: резонансная фильтрация, кристаллоподобная структура, резонатор Фабри-Перо, двухфазный резонатор.

Vodolazka M. V., Tolstenkova A. P., Nelin E. A. **Resonance filtration by two-phase reso**nators.

<u>Introduction</u>. Resonance spectral filtration has an exceptional importance for many applications. Resonators based on reflectors with antiphase reflection coefficients — two-phase resonators — are proposed.

<u>Single-phase and two-phase resonators.</u> Impedance dependencies of single- and twophase crystal-like structures and single- and two-phase resonators are examined. Frequency dependences of the transmission coefficient for the single- and two-phase resonators are shown.

Amplitude- and phase-frequency characteristics of resonators reflectors.

The amplitude-frequency and phase-frequency characteristics of resonators reflectors are given. Coming from the condition of phases balance for a two-phase resonator reason of displacement of its transmission coefficient characteristic is set.

<u>Two-phase resonator structure correction.</u> The correction of two-phase resonator structure is offered for correction of transmission coefficient characteristic displacement. Exact and approximate dependencies of relative magnitude of resonant cavity length correction from the impedance are shown.

<u>Conclusions.</u> Two-phase resonator structures are provided the increase of quality factor in comparing to the traditional single-phase structures. At the set sizes and range of impedances with the increase of impedance of layers from 3 to 10 two-phase resonator quality factor in 1.25...3 times more than single-phase resonator one.

Keywords: resonance filtration, crystal-like structure, Fabry-Perot resonator, two-phase resonator.

120