Waveguide Polarizer for Radar and Satellite Systems

Authors

DOI:

https://doi.org/10.20535/RADAP.2021.86.5-13

Keywords:

microwave engineering, satellite systems, waveguide polarizer, diaphragm, post, FEM, FDTD, polarization

Abstract

The article presents the results of the development of a new polarizer for satellite telecommunications and radar systems, which apply polarization signal processing. Antennas of such systems allow operating at a single or at two orthogonal circular polarizations simultaneously. Antennas with circular polarizations provide a series of advantages over radio engineering systems, which include them. For circular polarization the received signal level is constant and independent of orientation of the antenna. In addition, there is no a requirements of accurate angle orientation in the plane perpendicular to the direction of wireless link. The developed in an article polarizer is intended for use in satellite telecommunication and radar systems and it improves the overall performance of the radio engineering system. The device is based on a square waveguide with two posts and one iris and operates in the frequency range from 11.7 GHz to 12.5 GHz. In this work a mathematical model of a waveguide polarizer was developed and its electromagnetic characteristics were illustrated. Among these characteristics, differential phase shift, voltage standing wave ratio, axial ratio, and crosspolar discrimination were investigated. To check the correctness of the results, the characteristics of the mathematical model were compared with the results of modeling the device using the finite element method and finite difference time domain method. The created mathematical model makes it possible to effectively analyze the characteristics versus the variation of structure parameters. These parameters include the size of the wall of a square waveguide, the heights of irises and posts, the distance between them, the thickness of irises and posts. The optimal dimensions of the design elements of a polarizer were obtained. These sizes provide effective polarization characteristics and matching of the polarizer.

Author Biographies

A. V. Bulashenko , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

senior lecturer

S. I. Piltyay , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

Ph.D., Associate Professor

Y. I. Kalinichenko , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

student

I. V. Zabegalov , Shostka Institute of Sumy State University, Shostka, Ukraine

Lecturer

References

References

Joyal M.-A., Laurin J.-J. (2011). Design of think circular polarizers. IEEE International Symposium on Antennas and Propagation, USA, pp. 2653–2656. DOI: 10.1109/APS.2011.5997070.

Zhang N., Wang Y.-L., Chen J.-Z., Wu B., Li G. (2018). Design of K/Ka-Band Diplex Circular Polarizer with High Isolation. International Conference on Microwave and Millimeter Wave Technology (ICMMT), China, pp.1-3. DOI: 10.1109/ICMMT.2018.8563363.

Hwang S.-M., Kim J. M., Lee K.-H. (2012). Study on design parameters of waveguide polarizer for satellite communication. IEEE Asia-Pacific Conference on Antennas and Propagation, Singapore. DOI: 10.1109/APCAP.2012.6333202.

Dubrovka F. F., Piltyay S. I. (2013). A novel wideband coaxial polarizer. IX International Conference on Antenna Theory and Techniques, Ukraine, Odessa, pp. 473–474. DOI: 10.1109/ICATT.2013.6650816.

Kirilenko A. A., et al. (2013). Stepped approximation technique for designing coaxial waveguide polarizers. IX International Conference on Antenna Theory and Techniques, Ukraine, Odessa, pp. 470–472. DOI: 10.1109/ICATT.2013.6650815.

Dubrovka F. F., Piltyay S. I. (2017). Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds. XI IEEE International Conference on Antenna Theory and Techniques (ICATT), Kyiv, Ukraine, pp. 277-280. DOI: 10.1109/ICATT.2017.7972642.

Piltyay S. I. (2014). Enhanced C-band Coaxial Ortomode Transducer. Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia, Vol. 58, pp. 27–34. DOI: 10.20535/RADAP.2014.58.27-34.

Piltyay S. I. (2017). High performance extended C-band 3.4-4.8 GHz dual circular polarization feed system. XI IEEE International Conference on Antenna Theory and Techniques (ICATT), Kyiv, Ukraine, pp. 284-287. DOI: 10.1109/ICATT.2017.7972644.

Kolmakova N. G., Kirilenko A. A., Prosvirnin S. L. (2011). Planar chral irises in a square waveguide and optical activity manifestations. Radio Physics and Radio Astronomy, Vol. 2, No. 3, pp. 255-264. DOI: 10.1615/RadioPhysicsRadioAstronomy.v2.i3.70.

Yang D.-Y. and Lee M.-S. (2012). Analysis and Design of Waveguide Iris Polarizer for Rotation of Polarization Plane. Journal of the Korea Academia-Industrial cooperation Society, Vol. 13, Iss. 7, pp. 3201-3206. DOI: 10.5762/KAIS.2012.13.7.3201.

Chittora A., Yadav S. V. (2020). A Compact Circular Waveguide Polarizer with Higher Order Mode Excitation. IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India. DOI: 10.1109/CONECCT50063.2020.9198499.

Piltyay S., Bulashenko A., Kushnir H., Bulashenko O. (2020). Information Resources Economy in Satellite Systems based on New Microwave Polarizers with Tunable Posts. Path of Science: International Electronic Scientific Journal, Vol. 6, No. 11, pp. 5001–5010. DOI: 10.22178/pos.64-6.

Kirilenko A. A., Steshenko S. O., Derkach V. N., Ostryzhnyi Y. M. (2019). A Tunable Compact Polarizer in a Circular Waveguide. IEEE Transactions on Microwave Theory and Techniques, Vol. 67, Iss. 2, pp. 592-596. DOI: 10.1109/TMTT.2018.2881089.

Piltyay, S. I. and Dubrovka, F. F. (2013). Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory. Visnik NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, Vol. 54, pp. 13–23. DOI: 10.20535/RADAP.2013.54.13-23.

Piltyay S. I. (2012). Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides. International Conference on Mathematical Methods in Electromagnetic Theory (MMET12), Kyiv, Ukraine, pp. 492–495. DOI: 10.1109/MMET.2012.6331195.

Piltyay S., Bulashenko A., Sushko O., Bulashenko O., Demchenko I. (2021). Analytical modeling and optimization of new Ku-band tunable square waveguide iris-post polarizer. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 34, Iss. 5, pp.1–27. DOI: 10.1002/JNM.2890.

Bulashenko A. V. (2020). Evaluation of D2D Communications in 5G Networks. Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, Vol. 81, pp. 21-29. DOI: 10.20535/RADAP.2020.81.21-29.

Bulashenko A. V. and Piltyay S. I. (2020). Equivalent Microwave Circuit Technique for Waveguide Iris Polarizers Development. Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, Vol. 83, pp. 17–28. DOI: 10.20535/RADAP.2020.83.17-28.

Piltyay S., Bulashenko A., Fesyuk I., Bulashenko O. (2021). Comparative Analysis of Compact Satellite Polarizers Based on a Guide with Diaphragms. Advanced Electromagnetics, Vol. 10, No. 2, pp.44–55. DOI: 10.7716/aem.v10i2.1713.

Dubrovka F., Martunyuk S.,et al. (2020). Circularly Polarised X-band H11- and H21-Modes Antenna Feed for Monopulse Autotracking Ground Station: Invited Paper. IEEE Ukrainian Microwave Week (UkrMW), Kharkiv, Ukraine, pp. 196-202. DOI: 10.1109/UkrMW49653.2020.9252600.

Dubrovka F., et al. (2020). Compact X-band Stepped-Thickness Septum Polarizer. IEEE Ukrainian Microwave Week (UkrMW), Kharkiv, Ukraine, pp. 135-138. DOI: 10.1109/UkrMW49653.2020.9252583.

Kulik D. Yu., Mospan L. P., Perov A. O., Kolmakova N. G. (2016). Compact-size polarization rotators on the basis of irises with rectangular slots. Telecommunications and Radio Engineering, Vol. 75, Iss. 10, pp. 857-865. DOI: 10.1615/TelecomRadEng.v75.i10.10.

Kolmakova N., Prikolotin S., Perov A., Derkach V. Kirilenko A. (2016). Polarization Plane Rotation by Arbitrary Angle Using D4 Symmetrical Structures. IEEE Transactionson Microwave Theory and Techniques, Vol. 64, Iss. 2, pp. 429-435. DOI: 10.1109/TMTT.2015.2509966.

Kirilenko A. A., Steshenko S. O., Derkach V. N. and Ostrizhnyi Y. M. (2018). Comparative analysis of tunable compact rotators. Journal of Electromagnetic Waves and Applications, Vol. 33, pp. 304-319. DOI: 10.1080/09205071.2018.1550443.

Arnieri E., Greco F., Boccia L., and Amendola G. (2020). A SIW-Based Polarization Rotator With an Application to Linear-to-Circular Dual-Band Polarizers at K-/Ka-Band. IEEE Transactions on Antennas and Propagation, Vol. 68, Iss. 5, pp. 3730-3738. DOI:10.1109/TAP.2020.2963901.

Pozar D. M. (2011). Microwave engineering, 4th ed.

Maas S. A. (2014). Practical Microwave Circuits.

Marcuvitz N. (1986). Waveguide handbook. Short Run Press Ltd., 446 p.

Collin R. E. (1991). Field Theory of Guided Waves, 2nd ed.

Piltyay S. I., Bulashenko A. V., Herhil Y. Y. (2021). Numerical Performance of FEM and FDTD Methods for the Simulation of Waveguide polarizers. Visnik NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, Vol. 84, pp. 11–21. DOI:10.20535/RADAP.2021.84.11-21.

Published

2021-09-30

How to Cite

Булашенко , А. В., Пильтяй , С. И., Калиниченко , Е. И. and Забегалов , И. В. (2021) “Waveguide Polarizer for Radar and Satellite Systems”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (86), pp. 5-13. doi: 10.20535/RADAP.2021.86.5-13.

Issue

Section

Electrodynamics. Microwave devices. Antennas

Most read articles by the same author(s)