А. А. ТРУБИН, мл. науч. сотр.

СОБСТВЕННЫЕ КОЛЕБАНИЯ ДИЭЛЕКТРИЧЕСКОГО ШАРА НА МЕТАЛЛИЧЕСКОМ КЛИНЕ

Рассмотрим влияние металлического идеально проводящего клина на спектр собственных колебаний диэлектрического шара.

На рисунке изображен диэлектрический шар радиуса r_0 , относительной диэлектрической проницаемости ε_{1r} , расположенный на идеально проводящем клине, поверхность которого в сферической системе координат (r, θ , φ) описывается уравнением $\varphi = \pm \varphi_0$. Потенциальную функцию такой структуры во внутренней ($\varepsilon = \varepsilon_1$) и внешней ($\varepsilon = \varepsilon_0$) областях запишем в виде

$$u_{i}(r, \theta, \varphi) = a_{i}r \begin{bmatrix} j_{\eta+n}(k_{1}r) \\ h_{\eta+n}^{(2)}(k_{0}r) \end{bmatrix} P_{\eta+n}^{-\eta}(\cos\theta) \begin{cases} \sin\eta\varphi \\ \cos\eta\varphi \end{cases},$$
(1)

где $j_{\nu}(x) = \sqrt{\pi/2x} y_{\nu+1/2}(x), \quad h_{\nu}^{(2)}(x) = \sqrt{\pi/2x} H_{\nu+1/2}^{(2)}(x) - cферические функции Бесселя и Ханкеля [1].$

Выбор функций Лежандра $P_{\eta+n}^{-\eta}(x)$ у довлетворяет условию однозначности решения на острие клина для любых целых положительных значений индексов *n* при $\theta = 0$, π

$$P_{\eta+n}^{-\eta}(\cos\theta) = \frac{n!}{(2\eta+1)(2\eta+2)\dots(2\eta+n)} c_n^{\eta+1/2}(\cos\theta) P_{\eta}^{-\eta}(\cos\theta);$$
$$P_{\eta}^{-\eta}(\cos\theta) = 2^{-\eta}/\Gamma(\eta+1)(\sin\theta)^{\eta}.$$

Здесь $c_{\eta}^{\eta+1/2}(x)$ — многочлен Гегенбауэра [1, 3].

Требование обращения в нуль касательных составляющих электрического поля на поверхности клина определяет зависимость параметра η от угла раскрыва $\pm \varphi_0$:

для магнитных колебаний $H_{nsl}^{(\pm)}$

$$\eta^+ = \pi/\phi_0 s; \qquad \eta^- = \pi/\phi_0 (s + 1/2);$$
 (2)

для электрических колебаний E^(±)

$$\eta^+ = \pi/\phi_0 (s + 1/2); \qquad \eta^- = (\pi/\phi_0) s,$$
 (3)

где s = 0, 1, 2, ...

Условие на ребре [6] приводит к требованию $\eta > 0$.

Четные магнитные (электрические) виды колебаний $H_{nsl}^{(+)}(E_{nsl}^{(+)})$ характеризуются четным распределением r, θ компонент магнитного (электрического) поля относительно плоскости симметрии $\varphi = 0$. Нечетные колебания $H_{nsl}^{(-)}(E_{nsl}^{(-)})$ — нечетным распределением тех же компонент поля. Четность поля относительно другой плоскости симметрии $\theta = \pi/2$ определяется четностью многочленов Гегенбауэра [3]

$$c_n^{\eta+1/2}(\cos [\pi - \theta]) = (-1)^n c_n^{\eta+1/2}(\cos \theta).$$

Сшивая касательные компоненты поля на поверхности диэлектрического шара $r = r_0$, найдем характеристические уравнения, связывающие между собой параметры структуры:

для магнитных колебаний H^(±)

$$pj_{\eta+n-1}(p) h_{\eta+n}^{(2)}(q) = qj_{\eta+n}(p) h_{\eta+n-1}^{(2)}(q);$$
(4)

для электрических колебаний Enst

$$p^{2}j_{\eta+n}(p) \frac{d}{dq} \left[qh_{\eta+n}^{(2)}(q)\right] = q^{2}h_{\eta+n}^{(2)}(q) \frac{d}{dp} \left[pj_{\eta+n}(p)\right], \tag{5}$$

где $p = k_1 r_0; q = k_0 r_0; k_0 = \omega \sqrt{\varepsilon_0 \mu_0}; k_1 = \sqrt{\varepsilon_{1r} k_0}.$

Если относительная диэлектрическая проницаемость материала шара $\varepsilon_{1r} \gg 1$, то при возбуждении в резонаторе основных видов колебаний параметр q мал и можно положить $h_v^{(2)}(q) \approx j_{-(v+1)}(q)$. В этом случае уравнения (4), (5) перепишутся в виде:

для магнитных колебаний $H_{nsl}^{(\pm)}$

$$p j_{\eta+n-1}(p) j_{-(\eta+n+1)}(q) = - j_{\eta+n}(p) q j_{-(\eta+n)}(q);$$
(6)

для электрических колебаний $E_{nsl}^{(\pm)}$

$$p^{2}j_{\eta+n}(p) \frac{d}{dq} \left[qj_{-(\eta+n+1)}(q)\right] = q^{2}j_{-(\eta+n+1)}(q) \frac{d}{dp} \left[pj_{\eta+n}(p)\right].$$
(7)

В отличие от выражений (4), (5) полученные уравнения имеют решения в действительной области, удобны для расчета резонансных частот, однако не учитывают излучения.

На рисунке приведены решения характеристических уравнений (6), (7) для диэлектрического шара, изготовленного из материала проницаемости є₁=81. Как видно, основные магнитные виды колебаний шаpa возмущаются металлическим клином различным образом. Так, частота основного колебания Н(--), ориентированного перпендикулярно плоскости $\varphi = 0$, понижается при φ₀ → π, а частота колебания, поляризованного в плоскости кли-Формирование на, повышается.

проводящей плоскости трансформирует этот тип колебаний в квадрупольный. Поле магнитных азимутально однородных видов колебаний шара H_{n0l} не возмущается (сплошные кривые). Действительно, граничные условия для этих видов колебаний диэлектрического шара на поверхности клина выполняются автоматически при любых значениях углов φ_0 . Уменьшение «толщины» проводящей полуплоскости $\varphi_0 \rightarrow \pi$ при возбуждении основного электрического колебания приводит к ғыталкиванию поля из объема резонатора. Также, как и в случае формирования в объеме диэлектрического шара металлического конуса [5], условие обращения в нуль нормальной составляющей электрического поля на поверхности раздела сред диэлектрик — воздух) выполняется даже при $\varepsilon_{1r} \rightarrow \infty$. Это обстоятельство ограничивает возможность применения известных асимптотических граничных условий, полученных в работе [7].

Тип колебаний	E ⁽⁺⁻⁾	H()	H ₁₀₁	н(+) H011	H()	H ₂₀₁
f ₀ , ГГц	3,15	3,22	4,25	4,82	5,37	6,13
f, ГГц	2,95	3,25	4,39	4,75	5,24	6,39
d, %	6,2	1,0	3,1	1,6	2,3	3,6

Примечание: тесрстическое значение частоты f_0 рассчитывалось из уравнений (6), (7); f = измеренное значение гезонанской частоты шара; $\delta =$ относительная погрешность расчета частоты, %.

Результаты расчета и измерения частот собственных колебаний диэлектрического шара диаметром $2r_0 = 15,25$ мм, относительной диэлектрической проницаемости $\varepsilon_{1r} = 20$, расположенного на металлическом клине с углом раскрыва $\varphi_0 = 0,8\pi$, приведены в таблице.

Как видно, результаты расчетов по формулам (6), (7) хорошо согласуются с данными эксперимента.

Рассмотренная структура может быть использована в качестве резонансного корректора в изломе волновода

1. Абрамовиц М., Стиган И. Специальные функции. М.: Наука, 1979. 830 с. 2. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. М.: Наука, 1965. Т. 1. 294 с. 3. Виленкин Н. Я. Специальные функции и теория представлений групп. М.: Наука, 1965. 588 с. 4. Нефедов Е. И. Дифракция электромагнитных волн на диэлектрических структурах. М.: Наука, 1979. 270 с. 5. Трубин А. А. Резонансные колебания диэлектрического шара на металлическом конусе // Вестн. Киев. политехн. ин-та. Радиотехника. 1985. Вып. 22. С. 29—33. 6. Фелсен Л., Маркувиц H. Излучение и рассеяние волн. М.: Мир, 1978. Т. 1. 547 с. 7. Van Blader J. On the Resonances of Dielectric Resonator of Very High Permittivity // IEEE Trans. 1975. MTT = 23, N 2. P. 199—208.

Поступила в редколлегию 13.09.84

УДК 621.396.677

В. Е. БОЧАРОВ, асп.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОСТРАНСТВЕННОЙ ФИЛЬТРАЦИИ ПРИ НАЛОЖЕНИИ ЛИНЕЙНЫХ ОГРАНИЧЕНИЙ В АДАПТИВНОМ ПРОСТРАНСТВЕННОМ ФИЛЬТРЕ

Как известно, для подавления широкополосных пространственных помех применяется обработка сигналов, принятых антенной решеткой (АР), адаптивным пространственным фильтром (АПФ), который реализует адаптивный алгоритм пространственной фильтрации по