I. Б. ЛАЙХТМАН

ПОХИБКИ ПРИ ВИЗНАЧЕННІ НОРМОВАНИХ ЗНАЧЕНЬ ПОВНОГО ОПОРУ

Нормовані значення активної $R_{\sim} = \frac{R}{Z_0}$ та реактивної $X_{\sim} = \frac{X}{Z_0}$ складових повного опору можна зобразити виразами [1, 2]

$$R_{\sim} = \frac{2KEX}{1 + KEX^2 - (1 - KEX^2)\cos\varphi_0};$$
(1)
$$X_{\sim} = \frac{(1 - KEX^2)\sin\varphi_0}{1 + KEX^2 - (1 - KEX^2)\cos\varphi_0},$$

де K E X — коефіцієнт біжучої хвилі в ідеальній лінії з хвильовим опором Z_0 , навантаженій на опір $\overline{Z} = R + jX$;

фо — кут зсуву фаз коефіцієнта відбиття, який можна обчислити з допомогою виразу

$$\varphi_0 = (2\beta d_{\min} - \pi), \qquad (2)$$

де $\beta = \frac{2\pi}{\lambda_{\rm B}} - фазова стала;$ $d_{\rm мін} - віддалення від$

d_{мін} — віддалення від кінця лінії (місця, де включено навантаження) або від умовного кінця лінії до першого мінімуму напруженості електричного поля, якщо рухатися до генератора [1, 2].

Оскільки залежності $R_{\sim} = f_1 (KBX, \varphi_0)$ та $X_{\sim} = f_2 (KBX, \varphi_0)$ мають складний характер, частинні похибки при визначенні цих величин, обумовлені неточністю вимірювання KBX та φ_0 , так само мають складний характер. Тому цікаво знати ці залежності.

Розглянемо спочатку частинну відносну похибку при визначенні *R*_~, обумовлену помилкою при вимірюванні *КБХ*. На підставі формули для визначення похибки при непрямих вимірюваннях

$$\left(\frac{\Delta R_{\sim}}{R_{\sim}}\right)_{K \in X} = \pm \frac{\partial R_{\sim}}{\partial K \in X} \cdot \frac{1}{R_{\sim}} \cdot \Delta K \in X$$

знаходимо вираз, що нас цікавить,

$$\left(\frac{\Delta R_{\sim}}{R_{\sim}}\right)_{KXE} = \pm \frac{\left[1 - KEX^2 - (1 + KEX^2)\cos\varphi_0\right]}{\left[1 + KEX^2 - (1 - KEX^2)\cos\varphi_0\right]} \cdot \frac{\Delta KEX}{KEX} \,. \tag{3}$$

Графіки похибок $\left(\frac{\Delta R_{\sim}}{R_{\sim}}\right)_{K \in X}$ від величин $K \in X$, побудовані за формулою (3) для кількох значень φ_0 (соз φ_0), наведені на рис. 1. На осі ординат відкладено значення множника при $\frac{\Delta K \in X}{K \in X}$.

Рис. 1. Графіки похибок $\left(\frac{\Delta R_{\sim}}{R_{\sim}}\right)_{KEX}$ залежно від KEX для кількох значень φ_0 : $1 - \varphi_0 = .26^{\circ} (\cos \varphi_0 = 0.9); 2 - \varphi_0 = .45^{\circ} (\cos \varphi_0 = 0.5); 4 - \varphi_0 = .90^{\circ}; 5 - \varphi_0 = .180^{\circ}; 6 - \varphi_0 = 0.5);$ Pис. 2. Графіки похибок $\left(\frac{\Delta R_{\sim}}{R_{\sim}}\right)_{\varphi}$ залежно від KEX для кількох значень φ_0 : $1 - \varphi_0 = .26^{\circ}; 2 - \varphi_0 = .45^{\circ}; 3 - \varphi_0 = .60^{\circ}; 4 - \varphi_0 = .90^{\circ}$.

Якщо навантаження цілком активне, фазовий кут $\varphi^0 = 0; \pm 180^{\circ}$ $\left(\frac{d_{\text{мін}}}{\lambda_{\text{B}}} = 0,25 \text{ при } \frac{R}{Z_0} > 1 \text{ та } \frac{d_{\text{мін}}}{\lambda_{\text{B}}} = 0 \text{ або } 0,5 \text{ при } \frac{R}{Z_0} < 1\right).$ У цьому випадку множник при $\frac{\Delta K \mathcal{E} X}{K \mathcal{E} X}$ незалежно від значення $K \mathcal{E} X$ дорівнює 1, тобто одержуємо відому формулу для цілком активних навантажень

$$\left(\frac{\Delta R_{\sim}}{R_{\sim}}\right)_{KXE} = \pm \frac{\Delta KEX}{KEX}.$$

Аналогічно знаходимо відносну похибку нормованого значення активної складової повного опору, обумовлену помилкою при вимірюванні φ_0 . Користуючись виразом (2) та зображуючи φ_0 через експериментально знайдені величини $\frac{\Delta d_{\text{мін}}}{d_{\text{мін}}}$ та $\frac{\Delta \lambda_{\text{в}}}{\lambda_{\text{в}}}$, знаходимо

$$\left(\frac{\Delta R_{\sim}}{R_{\sim}}\right)_{\varphi} = \pm 2\beta d_{\text{MiH}} \cdot \frac{(K E X^2 - 1) \sin \varphi_0}{[1 + K E X^2 - (1 - K E X^2) \cos \varphi_0]} \times \left[\frac{\Delta d_{\text{MiH}}}{d_{\text{MiH}}} + \frac{\Delta \lambda_{\text{B}}}{\lambda_{\text{B}}}\right].$$
(4)

Графіки похибок $\left(\frac{\Delta R_{\sim}}{R_{\sim}}\right)_{\varphi}$ залежно від *КБХ*, побудовані за формулою (4), наведені на рис. 2. По осі ординат відкладено значення множника при $\left[\frac{\Delta d_{\text{мін}}}{d_{\text{мін}}} + \frac{\Delta \lambda_{\text{B}}}{\lambda_{\text{B}}}\right]$ у частках л. Для цілком активних навантажень похибка $\left(\frac{\Delta R_{\sim}}{R_{\sim}}\right)_{\varphi}$ теоретично дорівнює нулю. Для частинних похибок $\left(\frac{\Delta X_{\sim}}{X_{\sim}}\right)_{KEX}$ і $\left(\frac{\Delta X_{\sim}}{X_{\sim}}\right)_{\varphi}$ знайдені вирази $\left(\frac{\Delta X_{\sim}}{X_{\sim}}\right)_{KEX} = \mp \frac{4KEX^{2}}{(1-KEX^{2})[1+KEX^{2}-(1-KEX^{2})\cos\varphi_{0}]} \cdot \frac{\Delta KEX}{KEX};$ (5)

$$\left(\frac{\Delta X_{\sim}}{X_{\sim}}\right)_{\varphi} = \pm 2\beta d_{\mathrm{MiH}} \frac{\cos\varphi_{0}\left(1-K\delta X^{4}\right)-\left(1+K\delta X^{4}\right)+2K\delta X^{2}}{\left(1-K\delta X^{2}\right)\left(1+K\delta X^{2}-\left(1-K\delta X^{2}\right)\cos\varphi_{0}\right)\sin\varphi_{0}} \times \left[\frac{\Delta d_{\mathrm{MiH}}}{d_{\mathrm{MiH}}}+\frac{\Delta \lambda_{\mathrm{B}}}{\lambda_{\mathrm{B}}}\right].$$

$$(6)$$

На рис. З наведені графіки похибки $\left(\frac{\Delta X_{\sim}}{X_{\sim}}\right)_{KEX}$ залежно від KEX, побудовані за формулою (5). При KEX = 1 похибка прямує до нескінченності $(X_{\sim} \rightarrow 0)$.

На рис. 4 наведені графіки похибки $\left(\frac{\Delta X}{X}\right)_{\varphi}$ залежно від *КБХ*, побудовані за формулою (6). Для випадку цілком активного навантаження та в окремому випадку при *КБХ* = 1 похибка прямує до нескінченності.

Одержані вирази та графіки, що визначають частинні похибки повного опору, дозволяють кількісно оцінити точність визначення повного опору за даними вимірювання KBX, $d_{\text{мін}}$ та $\lambda_{\text{в}}$ за допомогою вимірювальної лінії, а також скласти уяву відносно доцільності перерахунку $\frac{\Delta KBX}{KBX}$, $\frac{\Delta d_{\text{мін}}}{d_{\text{мін}}}$, $\frac{\Delta \lambda_{\text{в}}}{\lambda_{\text{в}}}$ в $\frac{\Delta R_{\sim}}{R_{\sim}}$ та $\frac{\Delta X_{\sim}}{X_{\sim}}$.

ЛІТЕРАТУРА

1. Измерения на сверхвысоких частотах. Пер. с англ. под ред. В. Б. Штейншлейгера, «Советское радио», 1949.

2. Бова Н. Т., Лайхтман И. Б., Измерение параметров волноводных элементов, К., Гостехиздат, 1964.

I. B. LAIKHTMAN

THE ERRORS IN CALCULATION OF NORMALIZED IMPEDANCE

Summary

This article deals with the problem of errors in calculation of normalized impedance becouse of the unaccurency in measuring voltage standing wave ratio VSWR, wave length λ and displacement of minimum electrical field strength along the line d_{\min} in using the slot line.

The derived expressions and diagrams give the possibility to determine the limits of use of recalculating the errors of some parametrs ($\Delta VSWR$, $\Delta\lambda$, Δd_{min}) in

the errors of other $\left(\frac{\Delta}{R}\right)$

 $\left(\frac{\Delta R}{R}, \frac{\Delta X}{X}\right)$ ones.