Physical-topological modelling techniques of metal induction evaporator


  • L. Yu. Tsybulskyi National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev



physical-topological modeling, inductive evaporator, numerical methods, mathematical model


The article describes the methodology and results of hierarchical modelling of the induction evaporator, which takes into account the related heterogeneous processes and allows to numerically calculate the electromagnetic field in the vicinity of the evaporator as well as current and temperature distributions in the loaded crucible. The model development work allows to make the conclusion that the method of finite elements is most suitable for calculation of electromagnetic and temperature fields. The given model may be employed for modeling vapor flow ejection from the crucible to substrates and electrical discharges in the evaporator. On the base of decomposition of physical processes in the induction evaporator, a complex hierarchical physical-topological model, where the magnetic field of induction current is described by differential equation in partial derivatives relatively the complex amplitude of magnetic vector potential, is created. The magnetic field distribution is numerically calculated, from which the boundary conditions are founded for determining the current distribution in the elements of the evaporator with the use of the total current equation. The current distribution determines a heat source distribution, which, in turn, is a boundary condition for numerical calculation of non-linear heat-conductivity equation for the stationary problem. As a result, the temperature distribution and heat flows in the loaded crucible as well as integral characteristics of the induction evaporators are determined.

Author Biography

L. Yu. Tsybulskyi, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Tsybulsky L.


Перечень ссылок

Слухоцкий А. Е. Индукторы для индукционного нагрева / А. Е. Слухоцкий, С.Е. Рыскин. – Л. : Энергия, 1974. – 264 с.

Немков В. С. Теория и расчёт устройств индукционного нагрева / В. С. Немков, В. Б. Демидович. – Л. : Энергоиздат, 1988. – 280 с.

Kuzmichev A. Advances in Induction and Microwave Heating of Mineral and Organic Materials / A. Kuzmichev, L. Tsybulsky, S. Grundas ed.. – Vena : InTech, 2011. – 752 p. ISBN: 978-953-307-522-8.

Исаченко В. П. Теплопередача : учебник для вузов. : 3-е изд. / В. П. Исаченко, В. А. Осипова, А. С. Сукомел. – М. : Энергия, 1975. – 488 с.

Дешман С. Научные основы вакуумной техники / С. Дешман. – М. : Мир, 1964. –715 с.

Технология тонких плёнок : справочник. Т. 1 / Под ред. Л. Майссела и Р. Глэнга. – М. : Сов. радио, 1977. – 657 с.


Slukhotskii A. E. and Ryskin S.E. (1974) Induktory dlya induktsionnogo nagreva [Inductor for induction heating]. Leningrad, Energiya, 264 p.

Nemkov V. S. and Demidovich V. B. (1988) Teoriya i raschet ustroistv induktsionnogo nagreva [Theory and calculation of induction heating devices]. Leningrad, Energoizdat, 280 p.

Kuzmichev A., Tsybulsky L. and Grundas S. ed. (2011) Advances in Induction and Microwave Heating of Mineral and Organic Materials, Vena, InTech, 752 p.

Isachenko V. P., Osipova V. A. and Sukomel A. S. (1975) Teploperedacha [Heat transfer]. Moskow, Energiya, 488 p.

Deshman S. (1964) Nauchnye osnovy vakuumnoi tekhniki [Scientific fundamentals of vacuum technology]. Moskow, Mir Publ., 715 p.

Maissela L. eds. and Glenga R. eds. (1977) Tekhnologiya tonkikh plenok [Handbook of thin films technology]. Moskow, Sov. radio, 657 p.



How to Cite

Цибульский, Л. Ю. (2015) “Physical-topological modelling techniques of metal induction evaporator”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(63), pp. 107-118. doi: 10.20535/RADAP.2015.63.107-118.



Designing of Radio Equipment