Сигнальний перетворювач функцiонально iнтегрованих термомагнiтних сенсорiв

Ключові слова: мiкроелектронний сенсор, сигнальний перетворювач, бiомедична iнженерiя, функцiональне iнтегрування

Анотація

Стаття присвячена проблемам розвитку сенсорної електроніки у відповідності до концепцій "Лабораторія на чіпі" (Lab-on-Chip), "Програмована система на кристалі" (Programmable System-on-Chip) та "Інтернет речей" (Internet of Things). Вирішується задача функціонального інтегрування, основою якої є поєднання в одному пристрої декількох взаємодоповнюючих методів вимірювання. Новизною отриманих результатів є реалізація сенсорного пристрою термомагнітного аналізу на однокомпонентній структурі латерального магнітотранзистора. Показано, що перевагою побудови in-situ сенсорів термомагнітного аналізу на основі магнітотранзисторів є мультипараметричність їх pежимів роботи. Ця перевага створює можливості реалізації термомагнітних однокомпонентних вимірювальних перетворювачів з розширеними функціональними можливостями, а саме, вимірювання магнітного поля, керованого нагріву та вимірювання температури. Керування процесами вимірювання з функціональним in-situ інтегруванням здійснюється сигнальним перетворювачем, який містить аналоговий фронт-енд та мікроконтролер керування. На відміну від типових рішень сигнального перетворення на магнітотранзисторах, запропонована схема дозволяє перейти від двофазного типу вихідного сигналу магнітотранзистора у виді різницевої напруги до ефективнішого для вирішуваної задачі рішення з однофазним вихідним сигналом. Таке рішення особливо важливе в схемах з низьковольтним однополярним живленням, що є вимогою до пристроїв Інтернету речей. Сигнальний перетворювач реалізовано на платформі програмованої системи на кристалі PSoC CY8CKIT-059 PSoC 5LP Prototyping Kit. Інформативна величина температури визначається температурною залежністю падіння напруги на прямозміщених p-n переходах магнітотранзистора. Представлені результати апаратно-програмної реалізації сигнального перетворювача. Галузь застосування представленого вимірювального перетворювача – сенсорні пристрої термомагнітного аналізу для матеріалознавства, біофізики та медицини.

Біографії авторів

G. I. Barylo, Національний університет "Львівська політехніка"
Барило Г. І., к.т.н., доцент кафедри електронних приладів
O. V. Boyko, Львiвський нацiональний медичний унiверситет iмені Данила Галицького

Бойко О. В., кандидат технічних наук, доцент кафедри медичної інформатики

R. L. Holyaka, Національний університет "Львівська політехніка"

Голяка Р. Л., д.т.н., професор кафедри електронних приладів

T. A. Marusenkova, Національний університет "Львівська політехніка"

Марусенкова Т. А., кандидат технічних наук, асистент кафедри програмного забезпечення

I. N. Prudyus, Національний університет "Львівська політехніка"

Прудиус І. Н., д.т.н., професор кафедри радіоелектронних пристроїв та систем

S. E. Fabirovskyy, Національний університет "Львівська політехніка"
Фабіровський С. Є., к.т.н., асистент кафедри радіоелектронних пристроїв та систем

Посилання

Jurgons R., Seliger C., Hilpert A., Trahms L., Odenbach S. and Alexiou C. (2006) Drug loaded magnetic nanoparticles for cancer therapy. Journal of Physics: Condensed Matter, Vol. 18, Iss. 38, pp. S2893-S2902. DOI: 10.1088/0953-8984/18/38/s24

Duriagina Z., Holyaka R., Tepla T., Kulyk V., Arras P. and Eyngorn E. (2018) Identification of Fe3O4 Nanoparticles Biomedical Purpose by Magnetometric Methods. Biomaterials in Regenerative Medicine, . DOI: 10.5772/intechopen.69717

Ito A., Shinkai M., Honda H. and Kobayashi T. (2005) Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, Vol. 100, Iss. 1, pp. 1-11. DOI: 10.1263/jbb.100.1

Jaeger R. and Blalock T. (2016) Microelectronic circuit design, McGraw-Hill Education, 1355 p.

Barylo G.I., Holyaka R.L., Prudyus I.N. and Fabirovskyy S.E. (2018) Impedance measurement front-end based on signal four-phase detection. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, Iss. 72, pp. 62-68. DOI: 10.20535/radap.2018.72.62-68

Stemple C.C., Kwon H. and Yoon J. (2012) Rapid and Sensitive Detection of Malaria Antigen in Human Blood With Lab-on-a-Chip. IEEE Sensors Journal, Vol. 12, Iss. 9, pp. 2735-2736. DOI: 10.1109/jsen.2012.2205072

Bassi A., Bauer M., Fiedler M., Kramp T., van Kranenburg R., Lange S. and Meissner S. eds. (2013) Enabling Things to Talk: Designing IoT solutions with the IoT Architectural Reference Model, Springer, 325 p. DOI: 10.1007/978-3-642-40403-0

textit{Success Stories. Ukrainian Scientists Develop Sensors for International Fusion Energy Research (25/37)}. Available at: http://www.stcu.int/news/SuccessStories/index.php?id=29

Bolshakova I., Holyaka R. and Gerasimov S. (2005) Magnetic field measurement with continuous calibration. Patent GB2427700A.

Popovich R.S. (2004) Hall Effect Devices. Institute of Physics Publishing; Bristol, UK, 307 p.

Holyaka R., Hotra Z., Weglarski M. and Marusenkova T. (2012) А field characteristic of magnetic sensors on the splitted Hall structures. Electronika, Poland, Vol. 53, No.5, pp. 50–55.

Leepattarapongpan C., Phetchakul T., Pengpad P., Srihapat A., Jeamsaksiri W., Chaowicharat E., Hruanun C. and Poyai A. (2014) The increase sensitivity of PNP-magnetotransistor in CMOS technology. 2014 International Symposium on Integrated Circuits (ISIC). DOI: 10.1109/isicir.2014.7029448

PSoC® 5LP: CY8C52LP Family Datasheet: Programmable System-on-Chip.

textit{CY8CKIT-050 PSoC 5LP Development Kit Guide}. Cypress Semiconductor Corporation. Available at: http://www.cypress.com/file/45276/download

Опубліковано
2019-03-30
Як цитувати
Номер
Розділ
Радіоелектроніка біомедичних технологій