All-fiber dual-frequency Raman laser for terahertz telecommunication systems




stimulated Raman scattering, fiber Bragg grating, fiber laser, laser cavity, pump power, threshold power, telecommunication systems, terahertz range


The two-wave (2λ) fiber laser based on the stimulated Raman scattering is proposed in order to improve terahertz technologies realization and to increase the efficiency of radiation sources for telecommunication systems in the terahertz range. As a result of the analysis of the available experimental data in our work it was found that the Raman gain profile in single-mode fibers makes it possible to realize a 2λ laser in the fully fiber configuration. The main advantage of the proposed terahertz source is a significant reduction of the phase noises as it should be expected due to the both lasers will be pumped using a common source. The main parameters of the fiber Bragg gratings for 2λ laser cavity are determined and it is shown its possibility to meet the modern requirements for the monolithic integration in fully fiber device design. The possibility of reducing the threshold pump power by at least 400 times has been proved by simulating for different types
of fibers, and it will significantly lowered the weight and size characteristics of such a laser.


Hesler J., Prasankumar R. and Tignon J. (2019) Advances in terahertz solid-state physics and devices. Journal of Applied Physics, Vol. 126, Iss. 11, pp. 110401. DOI: 10.1063/1.5122975

Jia S., Yu X., Hu H., Yu J., Guan P., Ros F.D., Galili M., Morioka T. and Oxenløwe L.K. (2016) THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band. Optics Express, Vol. 24, Iss. 21, pp. 23777. DOI: 10.1364/oe.24.023777

Tonouchi M. (2007) Cutting-edge terahertz technology. Nature Photonics, Vol. 1, Iss. 2, pp. 97-105. DOI: 10.1038/nphoton.2007.3

Song H. and Nagatsuma T. (2011) Present and Future of Terahertz Communications. IEEE Transactions on Terahertz Science and Technology, Vol. 1, Iss. 1, pp. 256-263. DOI: 10.1109/tthz.2011.2159552

Cherry S. (2004) Edholm's law of bandwidth. IEEE Spectrum, Vol. 41, Iss. 7, pp. 58-60. DOI: 10.1109/mspec.2004.1309810

Choi Y., Choi J. and Cioffi J.M. (2013) A Geometric-Statistic Channel Model for THz Indoor Communications. Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 34, Iss. 7-8, pp. 456-467. DOI: 10.1007/s10762-013-9975-5

Kanno A., Kuri T., Hosako I., Kawanishi T., Yoshida Y., Yasumura Y. and Kitayama K. (2012) Optical and millimeter-wave radio seamless MIMO transmission based on a radio over fiber technology. Optics Express, Vol. 20, Iss. 28, pp. 29395. DOI: 10.1364/oe.20.029395

Seeds A.J., Shams H., Fice M.J. and Renaud C.C. (2015) TeraHertz Photonics for Wireless Communications. Journal of Lightwave Technology, Vol. 33, Iss. 3, pp. 579-587. DOI: 10.1109/jlt.2014.2355137

Fice M.J., Rouvalis E., Dijk F.v., Accard A., Lelarge F., Renaud C.C., Carpintero G. and Seeds A.J. (2012) 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system. Optics Express, Vol. 20, Iss. 2, pp. 1769. DOI: 10.1364/oe.20.001769

Yu J., Chang G., Jia Z., Chowdhury A., Huang M., Chien H., Hsueh Y., Jian W., Liu C. and Dong Z. (2010) Cost-Effective Optical Millimeter Technologies and Field Demonstrations for Very High Throughput Wireless-Over-Fiber Access Systems. Journal of Lightwave Technology, Vol. 28, Iss. 16, pp. 2376-2397. DOI: 10.1109/jlt.2010.2041748

Shao T., Shams H., Anandarajah P.M., Fice M.J., Renaud C.C., Dijk F.v., Seeds A.J. and Barry L.P. (2015) Phase Noise Investigation of Multicarrier Sub-THz Wireless Transmission System Based on an Injection-Locked Gain-Switched Laser. IEEE Transactions on Terahertz Science and Technology, Vol. 5, Iss. 4, pp. 590-597. DOI: 10.1109/tthz.2015.2418996

Ducournau G., Szriftgiser P., Beck A., Bacquet D., Pavanello F., Peytavit E., Zaknoune M., Akalin T. and Lampin J. (2014) Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection. IEEE Transactions on Terahertz Science and Technology, Vol. 4, Iss. 3, pp. 328-337. DOI: 10.1109/tthz.2014.2309006

Ishibashi T., Muramoto Y., Yoshimatsu T. and Ito H. (2014) Unitraveling-Carrier Photodiodes for Terahertz Applications. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, Iss. 6, pp. 79-88. DOI: 10.1109/jstqe.2014.2336537

Dyson A., Henning I.D. and Adams M.J. (2008) Comparison of Type I and Type II Heterojunction Unitravelling Carrier Photodiodes for Terahertz Generation. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, Iss. 2, pp. 277-283. DOI: 10.1109/jstqe.2007.910107

Yu X., Chen Y., Galili M., Morioka T., Jepsen P.U. and Oxenlowe L.K. (2014) The prospects of ultra-broadband THz wireless communications. 2014 16th International Conference on Transparent Optical Networks (ICTON). DOI: 10.1109/icton.2014.6876675

Federici J. and Moeller L. (2010) Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, Vol. 107, Iss. 11, pp. 111101. DOI: 10.1063/1.3386413

Shams H., Fice M.J., Balakier K., Renaud C.C., Dijk F.v. and Seeds A.J. (2014) Photonic generation for multichannel THz wireless communication. Optics Express, Vol. 22, Iss. 19, pp. 23465. DOI: 10.1364/oe.22.023465

hams H. and Seeds A. (2017) Photonics, Fiber and THz Wireless Communication. Optics and Photonics News, Vol. 28, Iss. 3, pp. 24. DOI: 10.1364/opn.28.3.000024

Tarashchuk I. V., Felinskyi G. S., Reznikov M. I., Korchak A. V. (2019) Fiber Bragg grating cavities in two-wave Raman laser for terahertz telecommunication application. in Proceedings IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO-2019), Igor Sikorsky Kyiv Polytechnic Institute. April 16-18, 2019. Kyiv, Ukraine. DOI: 10.1109/ELNANO.2019.8783925

Khlaponin Y. and Zhyrov G. (2016) Analysis and Monitoring of Telecommunication Networks Based on Intelligent Technologies. CEUR Workshop Proceedings, Selected Papers of the XVI International Scientific and Practical Conference "Information Technologies and Security", Vol-1813, pp. 32-39.

Hryhoruk V. I., Serdeha I. V., Felinskyi H. S. and Korotkov P. A. (2018) Vzaiemodiia fizychnykh poliv z nanostrukturovanymy materialamy. [Interaction of physical fields with nanostructured materials], Kyiv, Karavela, 382 p.

Mermelstein M., Horn C., Radic S. and Headley C. (2002) Six-wavelength Raman fibre laser for C- and L-band Raman amplification and dynamic gain flattening. Electronics Letters, Vol. 38, Iss. 13, pp. 636. DOI: 10.1049/el:20020433

Tarashchuk I., Felinskyi G., Reznikov M. (2018) Dual-frequency fiber Raman laser for terahertz and radio-over-fiber applications. Proc. XVIII Int. young scientists’ conference on Applied physics, May, 22-26, 2018, Kyiv, Ukraine, pp. 122-123.

Bromage J., Rottwitt K. and Lines M. (2002) A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles. IEEE Photonics Technology Letters, Vol. 14, Iss. 1, pp. 24-26. DOI: 10.1109/68.974149

Dianov E. (2002) Advances in Raman fibers. Journal of Lightwave Technology, Vol. 20, Iss. 8, pp. 1457-1462. DOI: 10.1109/jlt.2002.800263

Serdeha I.V., Grygoruk V.I. and Felinskyi G.S. (2018) Spectroscopic Features of Raman Gain Profiles in Single-Mode Fibers Based on Silica Glass. Ukrainian Journal of Physics, Vol. 63, Iss. 8, pp. 683. DOI: 10.15407/ujpe63.8.683

Babin S.A., Zlobina E.A. and Kablukov S.I. (2018) Multimode Fiber Raman Lasers Directly Pumped by Laser Diodes. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, Iss. 3, pp. 1-10. DOI: 10.1109/jstqe.2017.2764072

Tarashchuk I., Felinskyi G. and Reznikov M. (2018) Dual-frequency fiber Raman laser for generating radiation of the terahertz band. VIII International Conference on Optoelectronic Information Technologies, “PHOTONICS-ODS 2018” Ukraine, Vinnytsia, VNTU October 2-4, 2018, pp.211-212. %DOI:

Serdeha I.V., Honenko S.V., Felinskyi G.S. and Reznikov M.I. (2018) Pumping wavelength dependence of Raman lasing threshold in highly Ge-doped silica fiber. Proc. XIV Int. Sci. Conf. “Electronics and Applied Physics”, October, 23-26, 2018, Kyiv, Ukraine, p. 189.



How to Cite

Дружинін, В. А., Корчак, О. В., Рєзніков, М. І. . and Фелінський, Г. С. (2020) “All-fiber dual-frequency Raman laser for terahertz telecommunication systems”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (80), pp. 63-72. doi: 10.20535/RADAP.2020.80.63-72.



Telecommunication, navigation, radar systems, radiooptics and electroacoustics