Automatic EEG eye movement artifacts removal using Independent Component Analysis

Authors

  • P. H. Kytsun LLC "Samsung Electronics Ukraine Company"

DOI:

https://doi.org/10.20535/RADAP.2016.65.99-107

Keywords:

EEG, EOG, EEG artifacts removal, ICA

Abstract

Background. Eye movement artifacts contained in EEG recordings hamper a lot the automatic processing and analysis of EEG signal. Therefore, the removal of such artifacts is important stage for any further signal processing. There are artifacts removal methods based on using wavelet transformation, regression analysis in the time and frequency domain, Principal component analysis and Independent component analysis.
Methods. The novel method of automatic EEG eye movement artifacts removal based on Independent Component Analysis was proposed. The method utilizes the TDSEP algorithm for blind source separation. Own criteria for artifact components detection were used. The method was implemented with the Python programming language and tested on EEG signals recorded from two healthy volunteers.
Results. Comparison of the effectiveness of the method was conducted with the participation of two experts. They were asked to review the EEG fragments before and after artifacts removal and evaluate the quality of artifacts removal. The average value of assessing the quality of artifacts removal was 4.83 for TDSEP based algorithm and 4.58 for FastICA based algorithm.
Conclusion. The proposed method is more effective then method based on FastICA algorithm and using it for automatic EEG eye movement artifacts removal is expedient.

Author Biography

P. H. Kytsun, LLC "Samsung Electronics Ukraine Company"

Kytsun P. H., Postgraduate student

References

Перелік посилань

Медицинские приборы: разработка и применение / Д. В. Кларк, М. Р. Ньюман, В. Х. Олсон и др.; под ред. Д. Г. Вебстера. – Киев : Медторг, 2004. – 620 с.

Collura T. F. Technical Foundations of Neurofeedback / T. F. Collura. – New York : Routledge, 2014. – 272 p.

Канайкин А. М. Обнаружение артефактов в сигнале электроэнцефалограммы с помощью вейвлет-преобразования / А. М. Канайкин, А. А. Попов, К. А. Рощина и др. // Электроника и связь. – 2011. – № 4. – c. 126–130.

Zhao Q. Automatic identification and removal of ocular artifacts in EEG–improved adaptive predictor filtering for portable applications / Q. Zhao, B. Hu, Y. Shi et al. // IEEE transactions on nanobioscience. – 2014. – Vol. 13, No 2. – pp. 109–17.

Woestenburg J. C. The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain / J. C. Woestenburg, M. N. Verbaten, J. L. Slangen // Biological psychology. – 1983. – Vol. 16, № 1-2. – pp. 127–47.

Hyvärinen A. Independent component analysis: recent advances / A. Hyvärinen // Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. – 2013. – Vol. 371, № 1984. – p. 20110534.

Zou Y. Automatic EEG artifact removal based on ICA and Hierarchical Clustering / Y. Zou, J. Hart, R. Jafari // 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). – 2012. – pp. 649–652.

Winkler I. Automatic classification of artifactual ICA-components for artifact removal in EEG signals / I. Winkler, S. Haufe, M. Tangermann // Behavioral and brain functions : BBF. – 2011. – Vol. 7. – p. 30.

Jung T.-P. Removing electroencephalographic artifacts by blind source separation / T.-P. Jung, S. Makeig, C. Humphries et al. // Psychophysiology. – 2000. – Vol. 37, No 2. – pp. 163–178.

Kong W. Automatic and direct identification of blink components from scalp EEG / W. Kong, Z. Zhou, S. Hu et al. // Sensors (Basel, Switzerland). – 2013. – Vol. 13, No 8. – pp. 10783–801.

Hyvärinen A. Independent component analysis: algorithms and applications / A. Hyvärinen, E. Oja // Neural networks : the official journal of the International Neural Network Society. – 2000. – Vol. 13, No 4-5. – pp. 411–430.

Onton J. Information-based modeling of event-related brain dynamics / J. Onton, S. Makeig // Progress in brain research. – 2006. – Vol. 159. – pp. 99–120.

Ziehe A. TDSEP – an efficient algorithm for blind separation using time structure / A. Ziehe, K.-R. Müller // Proceedings of the 8th International Conference on Artificial Neural Networks, ICANN'98. – Berlin : Springer Verlag, 1998. – pp. 675-680.

References

Webster J. G. ed. (2009) Medical Instrumentation Application and Design. Wiley, Hoboken, New Jersey, 4th edition.

Collura T. F. (2014) Technical Foundations of Neurofeedback. Routledge, New York.

Kanaykin A. M., Popov A. A., Roshchina K. A., Chertov O. R., and Shashkov V. A. (2011) Wavelet-based detection of artifacts in EEG. Elektronika i svyaz', no. 4, pp. 126-130. (in Russian).

Zhao Q., Hu B., Shi Y., Li Y., Moore P., Sun M., and Peng H. (2014) Automatic identification and removal of ocular artifacts in EEG–improved adaptive predictor filtering for portable applications. IEEE transactions on nanobioscience, vol. 13, no. 2, pp. 109–17.

Woestenburg J. C., Verbaten M. N., and Slangen J. L. (1983) The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain. Biological psychology, vol. 16, no. 1-2, pp. 127–47.

Hyvärinen A. (2013) Independent component analysis: recent advances. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol. 371, no. 1984, p. 20110534.

Zou Y., Hart J., and Jafari R. (2012) Automatic EEG artifact removal based on ICA and Hierarchical Clustering. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 649-652.

Winkler I., Haufe S., and Tangermann M. (2011) Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behavioral and brain functions : BBF, vol. 7, p. 30.

Jung T.-P., Makeig S., Humphries C., Lee T.-W., McKeown M. J., Iragui V., and Sejnowski T. J. (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology, vol. 37, no. 2, pp. 163–178.

Kong W., Zhou Z., Hu S., Zhang J., Babiloni F., and Dai G. (2013) Automatic and direct identification of blink components from scalp EEG. Sensors, vol. 13, no. 8, pp. 10783–801.

Hyvärinen A. and Oja E. (2000) Independent component analysis: algorithms and applications. Neural networks : the official journal of the International Neural Network Society, vol. 13, no. 4-5, pp. 411-430.

Onton J. and Makeig S. (2006) Information-based modeling of event-related brain dynamics. Progress in brain research, vol. 159, pp. 99-120.

Ziehe A. and Müller K.-R. (1998) TDSEP — an efficient algorithm for blind separation using time structure. Perspectives in Neural Computing, pp. 675-680.

Published

2016-06-30

How to Cite

Кицун, П. Г. (2016) “Automatic EEG eye movement artifacts removal using Independent Component Analysis”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(65), pp. 99-107. doi: 10.20535/RADAP.2016.65.99-107.

Issue

Section

Radioelectronics Medical Technologies