Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation

Authors

  • V. Y. Noskov Ural Federal University
  • K. A. Ignatkov Ural Federal University
  • A. P. Chupahin Ural Federal University
  • A. V. Vasiliev O.Ya. Usikov Institute for Radiophysics and Electronics
  • G. P. Ermak O.Ya. Usikov Institute for Radiophysics and Electronics
  • S. M. Smolskiy National Research University "Moscow Power Engineering Institute"

DOI:

https://doi.org/10.20535/RADAP.2016.67.50-57

Keywords:

autodyne, autodyne signal, autodyne response, short-range radar, frequency modulation, Gunn-diode oscillator

Abstract

Research results of signal formation peculiarities in autodyne short-range radars with linear frequency modulation by non-symmetric saw-tooth law are presented. Calculation expressions for autodyne signals are obtained in the general case of arbitrary delay time of reflected emission. Temporal and spectral diagrams of autodyne signals are defined in the cases when its period duration is much more than the delay time of reflected emission, as well as for cases when this inequality is not satisfied. Experimental investigations are performed using the autodyne oscillator on the Gunn diode of 8mm-range, which is electronically controlled in frequency by the varicap.

Author Biographies

V. Y. Noskov, Ural Federal University

Noskov V. Ya., Doc. of Sci (Tecn.)

K. A. Ignatkov, Ural Federal University

Ignatkov K. A., Cand. of Sci (Tecn.)

A. P. Chupahin, Ural Federal University

Chupahin A. P., Postgraduate student

A. V. Vasiliev, O.Ya. Usikov Institute for Radiophysics and Electronics

Vasiliev A. V.

G. P. Ermak, O.Ya. Usikov Institute for Radiophysics and Electronics

Ermak G. P.,  Cand. of Sci (Phys.)

S. M. Smolskiy, National Research University "Moscow Power Engineering Institute"

Smolskiy S. M., Doc. of Sci (Tech)

References

Armstrong B.M., Brown R., Rix F. and Stewart J.A. C. (1980) Use of Microstrip Impedance-Measurement Technique in the Design of a BARITT Diplex Doppler Sensor. IEEE Transactions on Microwave Theory and Techniques, Vol. 28, No. 12, pp. 1437-1442. DOI: 10.1109/TMTT.1980.1130263

Varavin A.V., Vasiliev A.S., Ermak G.P. and Popov I.V. (2010) Autodyne Gunn-diode transceiver with internal signal detection for short-range linear FM radar sensor. Telecommunication and Radio Engineering, Vol. 69, No. 5, pp. 451-458. DOI: 10.1615/TelecomRadEng.v69.i5.80

Ermak G.P., Popov I.V., Vasilev A.S., Varavin A.V., Noskov V.Ya. and Ignatkov K.A. (2012) Radar sensors for hump yard and rail crossing applications. Telecommunication and Radio Engineering, Vol. 71, No. 6, pp. 567-580. DOI: 10.1615/TelecomRadEng.v71.i6.80

Noskov V.Ya., Varavin A.V., Vasiliev A.S., Ermak G.P., Zakarlyuk N.M., Ignatkov K.A. and Smolskiy S.M. (2016) Modern hybrid-integrated autodyne oscillators of microwave and millimeter wave ranges and their application. Part 9. Autodyne radar applications. Uspekhi sovremennoi radioelektroniki, No. 3, pp. 32-86. (in Russian).

Komarov I.V. and Smolskiy S.M. (2003) Fundamentals of short-range FM radar. Norwood: Artech House, 289 p.

Hinman W.S. and Brunetti C. (1946) Radio Proximity-Fuze Development. Proceedings of the IRE, Vol. 34, No. 12, pp. 976-986. DOI: 10.1109/JRPROC.1946.233235

Takayama Y. (1973) Doppler signal detection with negative resistance diode oscillators. IEEE Transactions on Microwave Theory and Techniques, Vol. 21, No. 2, pp. 89-94. DOI: 10.1109/TMTT.1973.1127929

Jefford P. A. and Howes M.S. (1985) Modulation schemes in low-cost microwave field sensor. IEEE Transaction of Microwave Theory and Technique, Vol. 31, No. 8, pp. 613-624. DOI: 10.1109/TMTT.1983.1131559

Votoropin S.D. and Noskov V.Ya. (2002) Analysis of operating regimes of EHF hybrid-integrated autodynes based on the Gunn micro power mesa planar diodes. Russian Physics Journal, Vol. 45, No. 2, pp. 195-206. DOI : 10.1023/A:1019664300993.

Votoropin S.D., Noskov V.Ya. and Smolskiy S.M. (2008) An analysis of the autodyne effect of oscillators with linear frequency modulation. Russian Physics Journal, Vol. 51, No. 6, pp. 610-618. DOI: 10.1007/s11182-008-9083-5

Votoropin S.D., Noskov V.Ya. and Smolskiy S.M. (2009) Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Range and Their Applications. Research of Autodynes with Frequency Modulation. Uspehi sovremennoi radioelektroniki, no. 3, pp. 3-50. (in Russian).

Noskov V.Ya., Vasiliev A.V., Ermak G.P., Ignatkov K.A. and Chupahin A.P. (2016) Mathematical model of FM autodyne radar. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), 2016 9th International Kharkiv Symposium on, A-25, pp. 1-4. DOI: 10.1109/MSMW.2016.7538101

Noskov V.Ya., Vasiliev A.V., Ermak G.P., Ignatkov K.A. and Chupahin A.P. (2016) Main expressions for analysis of signals and noise of autodyne FM radar. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), 2016 9th International Kharkiv Symposium on, A-9, pp. 1-4. DOI: 10.1109/MSMW.2016.7538019

Ignatkov K.A. and Vasiliev A.V. (2016) Signals of the autodyne FM radar for mm-wavelength range. Microwave & Telecommunication Technology (CriMiCo), 2016 26-th International Crimean Conference, Vol. 10, pp. 2139-2145.

Noskov V.Ya. and Ignatkov K.A. (2013) Autodyne signals in case of random delay time of the reflected radiation. Telecommunication and Radio Engineering, Vol. 72, no. 16, pp. 1521-1536. DOI: 10.1615/TelecomRadEng.v72.i16.70

Noskov V.Ya. and Ignatkov K.A. (2014) About applicability of quasi-static method of autodyne systems analysis. Radioelectronics and Communications Systems, Vol. 57, No. 3, pp. 139-148. DOI: 10.3103/S0735272714030054.

Noskov V.Ya. and Ignatkov K.A. (2013) Dynamics of autodyne response formation in microwave generators. Radioelectronics and Communications Systems, Vol. 56, No. 5, pp. 227-242. DOI: 10.3103/S0735272713050026

Noskov V.Ya. and Ignatkov K.A. (2013) Dynamic features of autodyne signals. Russian Physics Journal, Vol. 56, No. 4, pp. 420-428. DOI: 10.1007/s11182-013-0051-3

Giuliani G, Norgia M, Donati S. and Bosch T. (2002) Laser diode self-mixing technique for sensing applications. Journal of Optics A: Pure and Applied Optics, Vol. 4, No. 6, pp. 283-294. DOI: 10.1088/1464-4258/4/6/371

Sobolev V.S. and Kashcheeva G.A. (2008) Self-mixing frequency-modulated laser interferometry. Optoelectronics, Instrumentation and Data Processing, Vol. 44, No. 6, pp. 519-529. DOI: 10.3103/S8756699008060058

Usanov D.A., Skripal A.V. and Astakhov E.I. (2014) Determination of nanovibration amplitudes using frequency-modulated semiconductor laser autodyne. Quantum Electronics, Vol. 44, No. 2, pp. 184-188. DOI: 10.1070/QE2014v044n02ABEH015176

Downloads

Published

2016-12-30

How to Cite

Носков, В. Я., Игнатков, К. А., Чупахин, А. П., Васильев, А. С., Ермак, Г. П. and Смольский, С. М. (2016) “Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(67), pp. 50-57. doi: 10.20535/RADAP.2016.67.50-57.

Issue

Section

Telecommunication, navigation, radar systems, radiooptics and electroacoustics