Evaluating Cramer-Rao Bound for 2D direction-finding via planar antenna arrays

Authors

DOI:

https://doi.org/10.20535/RADAP.2016.67.12-17

Keywords:

direction-finding, Cramer-Rao bound, MUSIC, maximum likelihood method

Abstract

Evaluation of angular coordinates of radio sources is a major research interest and is mainly used for the separation of objectives. The configurations used by antenna arrays, which have been studied mainly concerned uniform linear, uniform rectangular, circular and uniform. The main advantage for the LAR-finding tasks is narrow main lobe of the directivity pattern, but scanning is only possible in the azimuth plane. In problems that require both azimuth and elevation direction finding planar AR was used. To date, the work devoted to a comparative study with superresolution direction finding performance, including estimates of the boundary of the Cramer-Rao, different configurations for the AP, touch often only one or two types of. Therefore, to obtain the optimal shape of the antenna array, which allows to obtain estimates of target coordinates with the highest accuracy is very important.

Author Biographies

Yu. B. Nechaev, Voronezh State University

Nechaev Yu. B.

I. V. Peshkov, Bunin Yelets State University

Peshkov I. W.

References

Перечень ссылок

Tuncer T., Friedlander B. Classical and Modern Direction-of-Arrival Estimation. —Academic Press. 2009. 456 p.

Godara L.C. Applications of antenna arrays to mobile communications. / Proceedings of the IEEE. — 1997. — Vol. 85, No. 8. — P. 1195-1245.

Nechaev Yu., Borisov D., Peshkov I. Beamforming algorithm for circular antenna array immune to multipath propagation and non-stationary interference sources / Radioelectronics and Communications Systems. — November 2011. —Volume 54, Issue 11. —pp. 604-612.

Нечаев Ю.Б., Пешков И.В. Оценка точности методов пеленгации со сверхразрешением для кольцевых и концентрических антенных решеток / Теория и техника радиосвязи. — 2016. — № 2. — с. 79 — 86

Mahmoud K. [и др.] A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization / Progress in Electromagnetics Research.–2007.-vol.72, p. 75–90.

Gozasht F., Dadashzadeh G. R., Nikmehr S. A comprehensive performance study of circular and hexagonal array geometries in the lms algorithm for smart antenna applications / Progress in Electromagnetics Research. -2007. —vol. 68, pp. 281– 296.

Dessouky M., Sharshar H., Albagory Y. Efficient sidelobe reduction technique for small-sized concentric circular arrays / Progress in Electromagnetics Research.–2006.-vol.65, p. 187–200.

Serdar O.A. High-Resolution Direction-of-Arrival Estimation via Concentric Circular Arrays / ISRN Signal Processing. —vol. 2013, Article ID 859590, 8 pages, 2013.

Ioannides P., Balanis C. Uniform circular and rectangular arrays for adaptive beamforming applications / IEEE Antennas and Wireless Propagation Letters.–2005.-Vol.4.-p.351–354.

Kretly L. C., Cerqueira Jr. A. S., Tavora A. A. S. A hexagonal adaptive antenna array concept for wireless communication applications / The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. — 2002. —Vol. 1. — pp. 247–249.

Espandar M., Bakhshi H.R. DOA estimation for rectangular antenna array in multipath fading and MIMO channels / 2009 International Conference on Future Computer and Communication, Kuala Lumpar. — 2009. —122-126 pp.

Meenakshi A. V., Punitham V., Gowri T. DOA Estimation for Rectangular Linear Array Antenna in Frequency Non Selective Slow Fading MIMO Channels / Communications in Computer and Information Science. —Volume 203. —2011, pp 12-24

Agatonovi M. [et ce.], Efficient neural network approach for 2d doa estimation based on antenna array measurements / Progress In Electromagnetics Research. — 2013. — Vol. 137, p.741–758.

Trees Van H.L. Detection, Estimation, and Modulation Theory. Optimum Array Processing. —John Wiley & Sons, 2002, 1470 p.

Нечаев Ю.Б., Пешков И.В. Построение кольцевых, восьмигранных, шестигранных и четырехгранных антенных решеток для радиопеленгации методом MUSIC / Радиотехника. — 2016. — №. 6. — С. 137-142.

Y. Hua, T. K. Sarkar, and D. D. Weiner, “An L-shaped array for estimating 2-D directions of wave arrival,” IEEE Trans. Antennas Propag.,vol. 44, pp. 889–895, Jun. 1996.

Houcem Gazzah and Karim Abed-Meraim, “Optimum Ambiguity-Free Directional and Omnidirectional Planar Antenna Arrays for DOA Estimation,” IEEE Transactions on signal processing, Vol. 57, No. 10, October 2009, pp. 3942–3953.

Stoica, P. Nehorai, A, “Performance study of conditional and unconditional direction-of-arrival estimation,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, iss. 10, pp. 1783- 1795, Oct. 1990.

Chan, A.Y.J., Litva, J. “MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array”, IEE Proceedings —Radar, Sonar and Navigation ( Volume: 142, Issue: 3, Jun 1995 ), p. 105 — 114

Schmidt R. Multiple Emitter Location and Signal Parameter Estimation. IEEE Transactions on Antennas and Propagation, Vol. 34, pp. 276 — 280, April 1986.

Нечаев Ю.Б., Климов А.И., Пешков И.В. Исследование итеративного стохастического метода максимального правдоподобия для плоских антенных решеток в задачах радиопеленгации / Радиотехника. — 2016. — №. 11. [в печати]

References

Tuncer T. E. and Friedlander B. (2009) Classical and Modern Direction-of-Arrival Estimation, Academic Press, 456 p.

Godara L.C. (1997) Applications of antenna arrays to mobile communications. Proceedings of the IEEE, Vol. 85, Iss. 8, pp. 1195-1245. DOI: 10.1109/5.622504

Nechaev Yu., Borisov D. and Peshkov I. (2011) Beamforming algorithm for circular antenna array immune to multipath propagation and non-stationary interference sources. Radioelectronics and Communications Systems, Vol. 54, No. 11, pp. 604-612. DOI: 10.3103/S0735272711110045

Nechaev Yu.B., Peshkov I.V., Aalmuttar Atheer Y.O. and Al Khafaji Sarmad K.D. (2016) Accuracy evaluation of super-resolution DOA estimation methods for ring and concentric antenna arrays. Teoriya i tekhnika radiosvyazi, Vol. 1, Iss. 2, pp. 79-86 (in Russian).

Mahmoud K. [etc.] (2007) A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization. Progress in Electromagnetics Research, Vol.72, p. 75-90. doi:10.2528/PIER07030904

Gozasht F., Dadashzadeh G. R. and Nikmehr S. (2007) A comprehensive performance study of circular and hexagonal array geometries in the lms algorithm for smart antenna applications. Progress in Electromagnetics Research, Vol. 68, pp. 281-296. doi:10.2528/PIER06091002

Dessouky M., Sharshar H. and Albagory Y. (2006) Efficient sidelobe reduction technique for small-sized concentric circular arrays. Progress in Electromagnetics Research, Vol.65, pp. 187-200. doi:10.2528/PIER06092503

Serdar O.A. (2013) High-Resolution Direction-of-Arrival Estimation via Concentric Circular Arrays. ISRN Signal Processing, Vol. 2013, Article ID 859590, 8 p., DOI: 10.1155/2013/859590

Ioannides P. and Balanis C. (2005) Uniform circular and rectangular arrays for adaptive beamforming applications. IEEE Antennas and Wireless Propagation Letters, Vol.4, No 1, pp.351-354. DOI: 10.1109/LAWP.2005.857039

Kretly L. C., Cerqueira Jr. A. S. and Tavora A. A. S. (2002) A hexagonal adaptive antenna array concept for wireless communication applications. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio, Vol. 1, pp. 247-249. DOI: 10.1109/PIMRC.2002.1046698

Espandar M. and Bakhshi H.R. (2009) DOA estimation for rectangular antenna array in multipath fading and MIMO channels. 2009 International Conference on Future Computer and Communication, Kuala Lumpar, pp.122-126. DOI: 10.1109/ICFCC.2009.86.

Meenakshi A. V., Punitham V. and Gowri T. (2011) DOA Estimation for Rectangular Linear Array Antenna in Frequency Non Selective Slow Fading MIMO Channels. Communications in Computer and Information Science, Vol. 203, pp. 12-24. DOI: 10.1007/978-3-642-24037-9_2

Agatonovi M., Stankovic Z., Milovanovic I., Doncov N., Sit L., Zwick T. and Milovanovic B. (2013) Efficient neural network approach for 2d doa estimation based on antenna array measurements. Progress In Electromagnetics Research, Vol. 137, pp.741-758. DOI: 10.2528/PIER13012114

Harry L. Van Trees (2002) Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, John Wiley & Sons, 1470 p.

Nechaev Y. and Peshkov I. (2016) Building circular, octagonal, hexagonal and rectangular antenna arrays for direction-of-arrival via superresolutional method MUSIC. Radiotekhnika - Radioengineering, No. 6, pp. 137-142 (in Russian).

Hua Y., Sarkar T. K. and Weiner D. D. (1991) An L-shaped array for estimating 2-D directions of wave arrival. IEEE Trans. Antennas Propag., Vol. 39, No 2, pp. 143-146, DOI: 10.1109/8.68174

Gazzah H. and Abed-Meraim K. (2009) Optimum Ambiguity-Free Directional and Omnidirectional Planar Antenna Arrays for DOA Estimation. IEEE Transactions on signal processing, Vol. 57, No. 10, pp. 3942-3953. DOI: 10.1109/TSP.2009.2023943

Stoica P. and Nehorai A. (1990) Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 38, No. 10, pp. 1783-1795. DOI: 10.1109/29.60109

Chan A.Y.J. and Litva J. (1995) MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array. IEE Proceedings - Radar, Sonar and Navigation, Vol. 142, No 3, pp. 105-114. DOI: 10.1049/ip-rsn:19951756.

Published

2016-12-30

How to Cite

Нечаев, Ю. Б. and Пешков, И. В. (2016) “Evaluating Cramer-Rao Bound for 2D direction-finding via planar antenna arrays”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(67), pp. 12-17. doi: 10.20535/RADAP.2016.67.12-17.

Issue

Section

Electrodynamics. Microwave devices. Antennas