Using fractal analysis of the time-frequency spectra of vibroacoustical signals for diagnostic of gas-turbine engines

Authors

  • N. I. Bouraou National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" http://orcid.org/0000-0001-6848-816X
  • S. R. Ignatovich National Aviation University
  • O. Ya. Pazdrii National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

DOI:

https://doi.org/10.20535/RADAP.2018.74.73-83

Keywords:

condition monitoring, gas-turbine engine, crack-like damage, vibroacoustic signal, time-frequency analysis, contour image, fractal analysis, box-counting dimension, Minkowski dimension

Abstract

The article is devoted to the improvement of signal processing methods of complex vibroacoustical signals for the diagnosis of initial crack-like damage in the blades of aircraft gas-turbine engines during operation. The low-frequency vibrational and acoustic noise in the range 0-10 kHz is used as diagnostic information, which is emitted by the engine during operation. Initial crack-like damage in the blade does not cause an increase in the overall level of vibroacoustical signals or their components. When the occurrence and initial propagation of damages change the signal structure, new components appear that are characterized by low energy capacity. The following signal processing methods are used in order to abstraction such components: time-frequency analysis, polyspectral (high-order spectral) analysis, scale-time analysis. However, the results of such signal processing are often quite complex for interpreting, comparing and deciding about the technical condition of the testing object. We propose an additional level of processing of diagnostic information, based on the methods of fractal analysis in order to increase the diagnostic value of the time-frequency spectra. The results of physical modeling and frequency-time analysis of vibroacoustical signals are presented. For this purpose, experimental studies of the forced vibrations of the physical model (turbine imitator) of the turbine are carried out under steady-state and non-steady-state vibration excitations. Two technical conditions of the turbine imitator are investigated: defect-free and the presence of an initial crack-like damage in one blade. We use the a time-frequency analysis based on Wigner-Wille pseudo-distribution to signal processing of vibroacoustical signals, which are emitted by a rotating turbine imitator during different excitation modes. The results of the time-frequency analysis are presented in the form of two-dimensional contour images characterizing the dependence of spectral estimates on the normalized frequency and time. At the second signal processing level, we determine fractal box-counting dimension (Minkowski dimension). Minkowski dimension is an integral numerical index that characterizes the geometry of the contour image, and allows to discriminate the turbine imitator conditions during operation at the different modes of vibrational excitation. We propose to use the Minkowski dimension as a diagnostic feature of a crack of the turbine blade. It is established that the Minkowski dimension is more sensitive to the occurrence of damage, in the case of its determination, not for full images, but for separate parts of images in different frequency ranges.

Author Biographies

N. I. Bouraou, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Bouraou N. I., D. Sci.(Techn)

S. R. Ignatovich, National Aviation University

Ihnatovych S. R., D.Sci (Techn), Prof.

O. Ya. Pazdrii, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Pazdrii O. Ya.

References

Перелік посилань

Adams D. Health Monitoring of Structural Materials and Components. Methods with Applications. - John Wiley & Sons Ltd., 2007. - 475 p.

Nagarajaiah S. Structural monitoring and identification of civil infrastructure in the United States / S. Nagarajaiah, K. Erazo // Structural Monitoring and Maintenance. - 2016. - Vol. 3, No. 1. - P. 51–69.

Staszewski W. Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing / W. Staszewski, C. Boller, G. Tomlinson. - John Wiley & Sons Ltd., 2004. - 288 p.

Арсланов Р.В. Контроль параметров вибрации газотурбинных двигателей в реальном масштабе времени // Р.В. Асланов. - УФА : УГАТУ, 2011. - 158с.

Чигрин В.С. Віброакустика і вібродіагностика газотурбінних двигунів / В.С. Чигрин, С.І. Суховій. - Х. : Нац. аерокосм. ун-т ім. М.Є. Жуковського «ХАІ», 2012. - 264 с.

Бурау Н.І. Методи цифрової обробки сигналів для вібраційної діагностики авіаційних двигунів / Н.І. Бурау, Л.Л. Яцко, О.М. Павловський, Ю.В. Сопілка. - К. : НАУ, 2012. - 152 с.

Бурау Н.І. Нестаціонарні коливання нелінійних (кусково-лінійних) систем / Н.І. Бурау. - Кіровоград : ПОЛІМЕД-Сервіс, 2009. - 104 с.

Radkowski S. Use of vibroacoustical signal in detecting early stages of failures / S. Radkowski // Eksploatacja i niezawodnosc. - 2007. - No 3. - pp. 11-18.

Сопілка Ю.В. Використання частотно-часових перетворень Вігнера вищих порядків у задачах віброакустичної діагностики / Ю.В. Сопілка // Наукові вісті НТУУ «КПІ». - 2005. - №6. - С. 110-117.

Паньків Ю.В. Дослідження вібраційних процесів у відцентрових насосних агрегатах з метою контролю динаміки розвитку дефектів їх робочих коліс та міжступінчатих ущільнень / Ю.В. Паньків // Розвідка та розробка нафтових і газових родовищ. - 2013. - № 4(49). - С. 75-80.

Bouraou N. Vibroacoustical diagnosis of the crack-like damages of aircraft engine blades at the steady-state and non-steady-state modes / N. Bouraou, Iu. Sopilka // Vibrations in Physical Systems. - 2010. - Vol.24. - P. 69-74.

Сопілка Ю.В. Застосування біспектрального аналізу віброакустичних сигналів для діагностування тріщин в лопатках авіаційних двигунів / Ю.В. Сопілка // Наукові вісті НТУУ «КПІ». - 2015. - №6. - С.73-79.

Feder J. Fractals / J. Feder. - New York : Plenum Press, 1988. - 254 с.

Чумак О. В. Энтропии и фракталы в анализе данных / О.В. Чумак. - М. : НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2011. - 164 с.

Захаров В.С. Динамические и фрактальные характеристики временных рядов выделения сейсмической энергии / В.С. Захаров // Нелинейный мир. - 2010. - Т.8, №4. - С. 234-242.

Пащенко Р.Э. Локализация областей наблюдения на аэрокосмических изображенияхс использованием построчного вычисления фрактальных размерностей и их межстрочной обработкой / Р.Э. Пащенко, В.С. Куц, А.В. Шаповалов // Системи обробки інформації. - 2008. - Вип. 3 (70). - С. 114-119.

Исследование почвенных особенностей с помощью фрактальных методов обработки аэрокосмических изображений / В.К. Иванов, Р.Э. Пащенко, С.Е. Яцевич, Е.И. Яцевич, Л.А. Егорова // Современные проблемы дистанционного зондирования Земли из космоса. - 2013. - Т. 10, № 2. - С.98-104.

Ампилова Н.Б. Алгоритмы фрактального анализа изображений / Н.Б. Ампилова, И.П. Соловьев // Компьютерные инструменты в образовании. - 2012. - №2. - С.19-24.

Кононюк А. Е. Дискретно-непрерывная математика. Книга 6. Поверхности / А.Е. Кононюк. - К. : Освіта України, 2016. - 618 с.

References

Adams D.E. (2007) Health Monitoring of Structural Materials and Components. DOI: 10.1002/9780470511589

Nagarajaiah S. and Erazo K. (2016) Structural monitoring and identification of civil infrastructure in the United States. Structural Monitoring and Maintenance, Vol. 3, Iss. 1, pp. 51-69. DOI: 10.12989/smm.2016.3.1.051

Staszewski W., Boller C. and Tomlinson G. (2003) Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing. DOI: 10.1002/0470092866

Arslanov R.V. (2011) Kontrol' parametrov vibratsii gazoturbinnykh dvigatelei v real'nom masshtabe vremeni [Vibration parameters testing of the gas-turbine engines at the real time terms]. UFA, UGATU, 158 p.

Chyhryn V.S. and Sukhovii S.I. (2012) Vibroakustyka i vibrodiahnostyka hazoturbinnykh dvyhuniv [Vibroacoustics and vibrodiagnostics of gas-turbine engines]. Kharkiv, KhAI, 264 p.

Burau N.I., Yatsko L.L., Pavlovskyi O.M. and Sopilka Yu.V. (2012) Metody tsyfrovoi obrobky syhnaliv dlia vibratsiinoi diahnostyky aviatsiinykh dvyhuniv [Digital signal processing methods for the vibration diagnosis of aircraft engines], Kyiv, NAU, 152 p.

Burau N.I. (2009) Nestatsionarni kolyvannia neliniinykh (kuskovo-liniinykh) system [Non-stationary oscillations of non-linear (piece-wise linear) systems], Kirovohrad, POLIMED-Servis, 104 p.

Radkowski S. (2007) Use of vibroacoustical signal in detecting early stages of failures. Eksploatacja i niezawodnosc, No 3, pp. 11-18.

Sopilka Yu.V. (2005) Vykorystannia chastotno-chasovykh peretvoren Vihnera vyshchykh poriadkiv u zadachakh vibroakustychnoi diahnostyky [Use of higher order Wigner time-frequency transformation for vibroacoustical diagnosis problems]. Naukovi visti NTUU KPI, No 6, pp.110-117.

Pan’kiv Iu.V. (2013) Investigation of vibration processes in centrifugal pumping units in order to control the dynamics of the defects of their working wheels and intermediate seals. Rozvidka ta rozrobka naftovych I gazovych rodovysch, No 4(49), pp.75-80.

Bouraou N.I. and Sopilka Iu.V. (2010) Vibroacoustical diagnosis of the crack-like damages of aircraft engine blades at the steady-state and non-steady-state modes. Vibrations in Physical Systems, Vol.24, pp. 69-74.

Sopilka Yu.V. (2015) Application of bispectral analysis of vibroacoustic signals for diagnosis blades cracks in aircraft engines. Research Bulletin of the National Technical University of Ukraine "Kyiv Polytechnic Institute", Iss. 6, pp. 73-79. DOI: 10.20535/1810-0546.2015.6.56652

Feder J. (1988) Fractals. Plenum Press, New York, 254 р.

Chumak O. V. (2011) Entropii i fraktaly v analize dannykh [Entropies and fractals in data analysis]. Moskow-Izhevsk, 164 p.

Zakharov V.S. (2010) Dynamic and Fractal Characteristics of Time Series of Released Seismic Energy, Nelineinyi mir, Vol. 8, No 4, pp. 234-242.

Pashchenko R.E., Kuc V.S. and Shapovalov A.V. (2008) Localization regions of supervision on the aerospace images with the use of line calculation fractals dimension and their between line treatment, Systemy obrobky informatsii, Iss. 3 (70), pp. 114-119.

Ivanov V.K., Paschenko R.E., Yatsevich S.Ye., Yatsevich Ye. I. and Yegorova L.A. (2013) Study of soil characteristics using fractal methods of aerospace image processing. Sovremennye problemy distancionnogo zondirovaniia Zemli iz kosmosa, Vol. 10, No 2, pp. 98-104.

Ampilova N.B. and Solov'ev I.P. (2012) Algoritmy fraktal'nogo analiza izobrazhenii [Algorithms of fractal analysis of images]. Komp'yuternye instrumenty v obrazovanii, No 2, pp. 19-24.

Kononyuk A. E. (2016) Diskretno-nepreryvnaya matematika. Kniga 6. Poverkhnosti [Discrete-continuous mathematics. Volume 6. Surfaces]. Kiev, Osvita Ukrainy, 618 p.

Published

2018-09-30

How to Cite

Бурау, Н. І., Ігнатович, С. Р. and Паздрій, О. Я. (2018) “Using fractal analysis of the time-frequency spectra of vibroacoustical signals for diagnostic of gas-turbine engines”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(74), pp. 73-83. doi: 10.20535/RADAP.2018.74.73-83.

Issue

Section

Computing methods in radio electronics