Method of Automatic Parameters Estimation of Radio Signals with Frequency-Hopping Spread Spectrum

Authors

DOI:

https://doi.org/10.20535/RADAP.2020.80.31-38

Keywords:

method, radio signal, frequency-hopping spread spectrum, parameter, frequency element, interference, automation, time-frequency distribution, periodogram

Abstract

Method of automatically estimation of frequency elements duration, first hop beginning time, last hop ending time, the number and nominals of target group frequencies and the bandwidth of radio signal with frequency-hopping spread spectrum in the presence of durable extraneous emissions in the frequency range of receiver is proposed in the article. The method is based on the analysis of the time-frequency distribution obtained using the Welch window transformation and consists of three main stages: extraneous emissions detection, time parameters estimation and frequency parameters estimation of frequency-hopping spread spectrum. The detection of extraneous emissions is carried out according to the time criterion using an iterative approach. On the basis of estimated emissions frequency parameters band-rejection filters are formed, which central frequencies are equal to the central interferences frequencies and stopband are equal to emissions spectrum width. The estimation of time and frequency parameters of the radio signal is carried out by analyzing the signal time-frequency distribution, taking into account the characteristics of the band-rejection filters.To exclude from the calculation of the parts of the signal containing harmonics associated with the change in the values of frequency elements, the time windows of the time-frequency distribution are limited and aligned with the centers of hops. An approach to the formation of operating frequencies grid using the statistical criterion and base frequencies, calculated by minimizing the sum of the differences between the current nominal frequency elements and the frequency grid step is proposed. An algorithm for calculation the last hop ending time based on a joint analysis of the current values of the central frequencies and the energies of the frequency elements is developed. The results of testing the operability and efficiency of the developed method by modeling in the MATLAB software environment with a signal-to-noise ratio of -25 dB are given.

Author Biography

O. A. Nahorniuk, Zhytomyr military institute named after S. P. Korolyov

Cand. Sci (Tech)

References

Перелік посилань

Radio monitoring: automated systems and their components / A. M. Rembovsky, A. V. Ashikhmin, V. A. Kozmin, S. M. Smolskiy. M.: Springer international publishing AG, 2018. - 457 p.

Макаренко С. И. Помехозащищенность систем связи с псевдослучайной перестройкой рабочей частоты : Монография / С. И. Макаренко, М. С. Иванов, С. А. Попов. Санкт-Петербург : Свое изд-во, 2013. - 166 с.

Нагорнюк О. А. Метод автоматичного визначення часових параметрів радіосигналів із псевдовипадковим перестроюванням робочої частоти на фоні вузькосмугових перешкод / О. А. Нагорнюк // Проблеми створення, випробування, застосування та експлуатації складних інформаційних систем: зб. наук. праць. Житомир: ЖВІ, 2018. - Вип. 15. - c. 53–64.

Kanaa A. A robust parameter estimation of FHSS signals using time-frequency analysis in a non-cooperative environment / A. Kanaa, A. Zuri Sha’ameri // Physical Communication. 2018. - № 26. - pp. 9–20.

Chevva L. FH signal interception based on the time-frequency spectrogram by image enhancement techniques / L. Chevva, G. Sagar // International Journal of Engineering Research and Applications. 2012. - Vol. 2, Issue 2. - pp. 687−692.

Draganic A. FHSS signal characterization based on the crossterms free time-frequency distributions / A. Draganic, I. Orovic, S. Stankovic // 2nd Mediterranean Conference on Embedded Computing. Budva. - 2013. - pp. 443–447.

Li T. Parameter estimation of FH signals based on STFT and music algorithm / T. Li, Y. Tang, Y. Lv // Computer Application and System Modeling. - 2010. - pp. 84–96.

Overdyk H. F. Detection and estimation of frequency hopping signals using wavelet transforms. Thesis for the degree of master of science in electrical engineering. Monterey : Naval Postgraduate School. - 1997. - 114p.

Hosseini S. N. Joint detection and hop parameters estimation of slow FHSS/MFSK signals using DHWT-AC technique in Rayleigh block fading channels / S. Hosseini, H. Razavi // Proceedings of the International MultiConference of Engineers and Computer Scientists. Hong Kong. - 2009. - pp. 55–59.

Jaiswal K. Spectral sensing for cognitive radio: detection and estimation of adaptive frequency hopping signal // NCC 2009. IIT Guwahati. - 2009. - pp. 224–228.

Qin Y. A new method of parameter estimation of frequency-hopping signal / Y. Qin, M. Lv // 2nd International Conference on Information, Electronics and Computer. - 2014. - pp. 138–141.

Lyons R. G. Understanding digital signal processing, 3d ed. / R. G. Lyons. Boston : Prentice Hall , 2011. - 858 p.

Ifeachor Е. Digital signal processing: a practical approach, 2d ed / Е. Ifeachor, B. Jervis. New Jersey : Prentice Hall, 2001. - 906 p.

Rancy F. Spectrum monitoring. Handbook / F. Rancy. Geneva : International Telecommunication Union, 2011. - 678 p.

Нагорнюк О. А. Методика автоматизованого визначення параметрів сигналу та розпізнання виду модуляції засобами радіомоніторингу в умовах апріорної параметричної невизначеності / О. А. Нагорнюк, О. О. Писарчук, В. В. Павлюк // Сучасні інформаційні технології у сфері безпеки та оборони. Київ : НУОУ. - 2014. - Вип. 1 (19). - c. 63–69.

Rosen Kenneth H., Discrete Mathematics and Its Applications, 8th ed. / H. Rosen Kenneth. New York : McGraw-Hill, 2019. - 1118 p.

References

Rembovsky A. M., Ashikhmin A. V., Kozmin V. A. and Smolskiy S. M. (2018) Radio monitoring: automated systems and their components, Springer international publishing AG, part of Springer Nature 2018, 461 p. DOI: htps://doi.org/10.1007/978-3-319-74277-9

Makarenko S. I., Ivanov M. S. and Popov S. A. (2013) Pomekhozashchishchennost' sistem svyazi s psevdosluchainoi perestroikoi rabochei chastity [Interference immunity of communication systems with frequency-hopping spread spectrum], 166 p.

Nahorniuk O. A. (2018) Metod avtomatychnoho vyznachennia chasovykh parametriv radiosyhnaliv iz psevdovypadkovym perestroiuvanniam robochoi chastoty na foni vuzkosmuhovykh pereshkod [Method of automatic time parameters estimation of radio signals with frequency-hopping spread spectrum against the background of narrow-band interferences], Problems of creation, testing, application and operation of complex information systems, No. 15, ZVI, Zhytomyr, pp. 53–64.

Kanaa A. and Sha’ameri A.Z. (2018) A robust parameter estimation of FHSS signals using time–frequency analysis in a non-cooperative environment. Physical Communication, Vol. 26, pp. 9-20, DOI: 10.1016/j.phycom.2017.10.013

Chevva Lahari and Sagar G.V.R. (2012), FH Signal Interception Based on the Time-Frequency Spectrogram by Image Enhancement Techniques, International Journal of Engineering Research and Applications, Vol. 2, Issue 2, pp. 687−692.

Draganic A., Orovic I. and Stankovic S. (2013) FHSS signal characterization based on the crossterms free time-frequency distributions, 2013 2nd Mediterranean Conference on Embedded Computing (MECO), pp. 443–447, DOI: 10.1109/meco.2013.6601343.

Li Tong, Tang Yinhui and Lv Jun (2010) Parameter estimation of FH signals based on STFT and music algorithm. 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), pp. V5-232-V5-236, DOI: 10.1109/iccasm.2010.5619186

Overdyk H. F. (1997) Detection and estimation of frequency hopping signals using wavelet transforms. Thesis for the degree of master of science in electrical engineering, Naval Postgraduate School, Monterey, 114 p.

Hosseini S. N. and Razavi H. (2009), Joint Detection and Hop Parameters Estimation of Slow FHSS/MFSK Signals Using DHWT-AC Technique in Rayleigh Block Fading Channels,

Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, Vol. I, pp.55–59.

Jaiswal Kapil (2009) Spectral Sensing for Cognitive Radio: Detection and Estimation of Adaptive Frequency Hopping Signal, NCC 2009, IIT Guwahati, pp. 224–228.

Yongli Qin and Ming Lv (2014) A New Method of Parameter Estimation of Frequency-Hopping Signal, Proceedings of the 2nd International Conference on Information, Electronics and Computer, pp. 138–141, DOI: 10.2991/icieac-14.2014.31

Lyons R. G. (2011) Understanding digital signal processing, Prentice Hall, Boston, 858 p.

Ifeachor Е. and Jervis B. (2001) Digital signal processing: a practical approach, Prentice Hall, New Jersey, 906 p.

Rancy F. (2011) Spectrum monitoring. Handbook. International Telecommunication Union, Geneva, 678 p.

Nahorniuk O. A., Pysarchuk O. O. and Pavliuk V. V. (2014) The methods of the automated determination of signal parameters and modulation type recognition by radiomonitoring facilities under parametric uncertainty, Modern Information Technologies in the Sphere of Security and Defence, No 1 (19), pp. 63–69.

Kenneth H. Rosen (2019) Discrete Mathematics and Its Applications, 8th ed., McGraw-Hill, New York, 1118 p.

Published

2020-03-30

How to Cite

Нагорнюк , О. А. (2020) “Method of Automatic Parameters Estimation of Radio Signals with Frequency-Hopping Spread Spectrum”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (80), pp. 31-38. doi: 10.20535/RADAP.2020.80.31-38.

Issue

Section

Telecommunication, navigation, radar systems, radiooptics and electroacoustics