All-fiber dual-frequency Raman laser for terahertz telecommunication systems
DOI:
https://doi.org/10.20535/RADAP.2020.80.63-72Keywords:
stimulated Raman scattering, fiber Bragg grating, fiber laser, laser cavity, pump power, threshold power, telecommunication systems, terahertz rangeAbstract
The two-wave (2λ) fiber laser based on the stimulated Raman scattering is proposed in order to improve terahertz technologies realization and to increase the efficiency of radiation sources for telecommunication systems in the terahertz range. As a result of the analysis of the available experimental data in our work it was found that the Raman gain profile in single-mode fibers makes it possible to realize a 2λ laser in the fully fiber configuration. The main advantage of the proposed terahertz source is a significant reduction of the phase noises as it should be expected due to the both lasers will be pumped using a common source. The main parameters of the fiber Bragg gratings for 2λ laser cavity are determined and it is shown its possibility to meet the modern requirements for the monolithic integration in fully fiber device design. The possibility of reducing the threshold pump power by at least 400 times has been proved by simulating for different types
of fibers, and it will significantly lowered the weight and size characteristics of such a laser.
References
Hesler J., Prasankumar R. and Tignon J. (2019) Advances in terahertz solid-state physics and devices. Journal of Applied Physics, Vol. 126, Iss. 11, pp. 110401. DOI: 10.1063/1.5122975
Jia S., Yu X., Hu H., Yu J., Guan P., Ros F.D., Galili M., Morioka T. and Oxenløwe L.K. (2016) THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band. Optics Express, Vol. 24, Iss. 21, pp. 23777. DOI: 10.1364/oe.24.023777
Tonouchi M. (2007) Cutting-edge terahertz technology. Nature Photonics, Vol. 1, Iss. 2, pp. 97-105. DOI: 10.1038/nphoton.2007.3
Song H. and Nagatsuma T. (2011) Present and Future of Terahertz Communications. IEEE Transactions on Terahertz Science and Technology, Vol. 1, Iss. 1, pp. 256-263. DOI: 10.1109/tthz.2011.2159552
Cherry S. (2004) Edholm's law of bandwidth. IEEE Spectrum, Vol. 41, Iss. 7, pp. 58-60. DOI: 10.1109/mspec.2004.1309810
Choi Y., Choi J. and Cioffi J.M. (2013) A Geometric-Statistic Channel Model for THz Indoor Communications. Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 34, Iss. 7-8, pp. 456-467. DOI: 10.1007/s10762-013-9975-5
Kanno A., Kuri T., Hosako I., Kawanishi T., Yoshida Y., Yasumura Y. and Kitayama K. (2012) Optical and millimeter-wave radio seamless MIMO transmission based on a radio over fiber technology. Optics Express, Vol. 20, Iss. 28, pp. 29395. DOI: 10.1364/oe.20.029395
Seeds A.J., Shams H., Fice M.J. and Renaud C.C. (2015) TeraHertz Photonics for Wireless Communications. Journal of Lightwave Technology, Vol. 33, Iss. 3, pp. 579-587. DOI: 10.1109/jlt.2014.2355137
Fice M.J., Rouvalis E., Dijk F.v., Accard A., Lelarge F., Renaud C.C., Carpintero G. and Seeds A.J. (2012) 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system. Optics Express, Vol. 20, Iss. 2, pp. 1769. DOI: 10.1364/oe.20.001769
Yu J., Chang G., Jia Z., Chowdhury A., Huang M., Chien H., Hsueh Y., Jian W., Liu C. and Dong Z. (2010) Cost-Effective Optical Millimeter Technologies and Field Demonstrations for Very High Throughput Wireless-Over-Fiber Access Systems. Journal of Lightwave Technology, Vol. 28, Iss. 16, pp. 2376-2397. DOI: 10.1109/jlt.2010.2041748
Shao T., Shams H., Anandarajah P.M., Fice M.J., Renaud C.C., Dijk F.v., Seeds A.J. and Barry L.P. (2015) Phase Noise Investigation of Multicarrier Sub-THz Wireless Transmission System Based on an Injection-Locked Gain-Switched Laser. IEEE Transactions on Terahertz Science and Technology, Vol. 5, Iss. 4, pp. 590-597. DOI: 10.1109/tthz.2015.2418996
Ducournau G., Szriftgiser P., Beck A., Bacquet D., Pavanello F., Peytavit E., Zaknoune M., Akalin T. and Lampin J. (2014) Ultrawide-Bandwidth Single-Channel 0.4-THz Wireless Link Combining Broadband Quasi-Optic Photomixer and Coherent Detection. IEEE Transactions on Terahertz Science and Technology, Vol. 4, Iss. 3, pp. 328-337. DOI: 10.1109/tthz.2014.2309006
Ishibashi T., Muramoto Y., Yoshimatsu T. and Ito H. (2014) Unitraveling-Carrier Photodiodes for Terahertz Applications. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, Iss. 6, pp. 79-88. DOI: 10.1109/jstqe.2014.2336537
Dyson A., Henning I.D. and Adams M.J. (2008) Comparison of Type I and Type II Heterojunction Unitravelling Carrier Photodiodes for Terahertz Generation. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, Iss. 2, pp. 277-283. DOI: 10.1109/jstqe.2007.910107
Yu X., Chen Y., Galili M., Morioka T., Jepsen P.U. and Oxenlowe L.K. (2014) The prospects of ultra-broadband THz wireless communications. 2014 16th International Conference on Transparent Optical Networks (ICTON). DOI: 10.1109/icton.2014.6876675
Federici J. and Moeller L. (2010) Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, Vol. 107, Iss. 11, pp. 111101. DOI: 10.1063/1.3386413
Shams H., Fice M.J., Balakier K., Renaud C.C., Dijk F.v. and Seeds A.J. (2014) Photonic generation for multichannel THz wireless communication. Optics Express, Vol. 22, Iss. 19, pp. 23465. DOI: 10.1364/oe.22.023465
hams H. and Seeds A. (2017) Photonics, Fiber and THz Wireless Communication. Optics and Photonics News, Vol. 28, Iss. 3, pp. 24. DOI: 10.1364/opn.28.3.000024
Tarashchuk I. V., Felinskyi G. S., Reznikov M. I., Korchak A. V. (2019) Fiber Bragg grating cavities in two-wave Raman laser for terahertz telecommunication application. in Proceedings IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO-2019), Igor Sikorsky Kyiv Polytechnic Institute. April 16-18, 2019. Kyiv, Ukraine. DOI: 10.1109/ELNANO.2019.8783925
Khlaponin Y. and Zhyrov G. (2016) Analysis and Monitoring of Telecommunication Networks Based on Intelligent Technologies. CEUR Workshop Proceedings, Selected Papers of the XVI International Scientific and Practical Conference "Information Technologies and Security", Vol-1813, pp. 32-39.
Hryhoruk V. I., Serdeha I. V., Felinskyi H. S. and Korotkov P. A. (2018) Vzaiemodiia fizychnykh poliv z nanostrukturovanymy materialamy. [Interaction of physical fields with nanostructured materials], Kyiv, Karavela, 382 p.
Mermelstein M., Horn C., Radic S. and Headley C. (2002) Six-wavelength Raman fibre laser for C- and L-band Raman amplification and dynamic gain flattening. Electronics Letters, Vol. 38, Iss. 13, pp. 636. DOI: 10.1049/el:20020433
Tarashchuk I., Felinskyi G., Reznikov M. (2018) Dual-frequency fiber Raman laser for terahertz and radio-over-fiber applications. Proc. XVIII Int. young scientists’ conference on Applied physics, May, 22-26, 2018, Kyiv, Ukraine, pp. 122-123.
Bromage J., Rottwitt K. and Lines M. (2002) A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles. IEEE Photonics Technology Letters, Vol. 14, Iss. 1, pp. 24-26. DOI: 10.1109/68.974149
Dianov E. (2002) Advances in Raman fibers. Journal of Lightwave Technology, Vol. 20, Iss. 8, pp. 1457-1462. DOI: 10.1109/jlt.2002.800263
Serdeha I.V., Grygoruk V.I. and Felinskyi G.S. (2018) Spectroscopic Features of Raman Gain Profiles in Single-Mode Fibers Based on Silica Glass. Ukrainian Journal of Physics, Vol. 63, Iss. 8, pp. 683. DOI: 10.15407/ujpe63.8.683
Babin S.A., Zlobina E.A. and Kablukov S.I. (2018) Multimode Fiber Raman Lasers Directly Pumped by Laser Diodes. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, Iss. 3, pp. 1-10. DOI: 10.1109/jstqe.2017.2764072
Tarashchuk I., Felinskyi G. and Reznikov M. (2018) Dual-frequency fiber Raman laser for generating radiation of the terahertz band. VIII International Conference on Optoelectronic Information Technologies, “PHOTONICS-ODS 2018” Ukraine, Vinnytsia, VNTU October 2-4, 2018, pp.211-212. %DOI:
Serdeha I.V., Honenko S.V., Felinskyi G.S. and Reznikov M.I. (2018) Pumping wavelength dependence of Raman lasing threshold in highly Ge-doped silica fiber. Proc. XIV Int. Sci. Conf. “Electronics and Applied Physics”, October, 23-26, 2018, Kyiv, Ukraine, p. 189.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).