Radiation-Resistant Memory Device Based on Chalcogenide Glassy Semiconductor

Authors

  • V. M. Kychak Вінницький національний технічний університет
  • I. V. Slobodyan Вінницький національний технічний унівеситет
  • V. L. Vovk Вінницький національний технічний університет

DOI:

https://doi.org/10.20535/RADAP.2020.80.79-84

Keywords:

amorphous semiconductor, chalcogenide glassy semiconductors, radiation resistance, memory cell, irradiation dose, γ - quanta, film transistor, Schottky junction

Abstract

A memory cell structure is proposed that uses a Schottky barrier thin film transistor based on an amorphous semiconductor as a junction element, and a chalcogenide glassy semiconductor film as a switching element. A physical storage cell model has been developed. The dependence of the transistor and memory cell parameters on the dose of neutron flux and γ - quanta was investigated. It is shown that when the dose of neutron irradiation is changed, the steepness of the drain-gate characteristic (DGC) decreases by 10% at a dose of the order of 1015 n/s, at the same time, the transfer coefficient of the bipolar n-p-n transistor decreases by 20% already at doses of 1013 n/s, indicating a significant increase in the radiation resistance of the proposed memory cell. In the case of irradiation with γ - quanta in the range up to 2.6 Mrad, the steepness of the DGC of the proposed structure changes by only 10%. When used as an isolation element, a field-effect transistor with an insulated gate, the slope of the DGC is reduced by 50%, that it is bad result. It is shown that the current of recording information of the proposed structure when changing the dose of γ - quantum flux to 2.6 Mrad changes by about 10%, at the same time, in the case of using a field-effect transistor with an isolated cover, the information recording current changes by 50%. The study of the dependence of the gate current on the dose of γ – quanta is showed. When the radiation dose changes from 0 to 2.6 Mrad, the gate current changes only by 10%, which indicates the high resistance of the proposed structure to the action of permeable radiation.

References

Перелік посилань

Белоус А.Н. Космическая электроника / А.Н. Белоус, В.А. Солодуха, С.В. Шведов // Монография в двух частях: Москва: Техносфера. - 2015. – 696 с.

Prinzie J. Optimal Physical Implementation of Radiation Tolerant High-Speed Digital Integrated Circuits in Deep-Submicron Technologies / Jeffrey Prinzie, Karel Appels, Szymon Kulis // Electronics. - 2019. - Vol. 8, No. 4. - pp. 432. doi: 10.3390/ electronics8040432

Kyungsoo Jeong Radiation-Hardened Instrumentation Amplifier for Sensor Readout Integrated Circuits in Nuclear Fusion Applications / Kyungsoo Jeong, Duckhoon Ro, Gwanho Lee, Myounggon Kang and Hyung-Min Lee // Electronics. - 2018. - Vol.7, No. 12. - pp. 429. doi: 10.3390/electronics7120429

Bjorn Van Bockel Radiation Assessment of a 15.6 ps Single-Shot Time-to-Digital Converter in Terms of TID~/ Bjorn Van Bockel, Jeffrey Prinzie and Paul Leroux // Electronics. - 2019. - Vol. 8, No. 5. - pp. 558, doi: 10.3390/ electronics8050558

Wong H.-S. P. Phase Change Memory / H.-S. Philip Wong et al. // Proceedings of the IEEE. – 2010. – Vol. 98, No 12. – pp. 2201-2227.

Rajendran B. Phase change memory technology [Електронний ресурс] / Bipin Rajendran [et al.] / IBM Research. – 2009. Режи доступу: http://www.itrs.net/ITWG/Beyond_CMOS/2010Memory_April/Proponent/Nanowire PCRAM.pdf

Кичак В.М. Підвищення радіаційної стійкості енергонезалежних запам’ятовуючих пристроїв на базі халькогенідних склоподібних напівпровідників / В.М. Кичак, І.В. Слободян, В.Л. Вовк // Вісник вінницького політехнічного інституту. - 2019. - № 4 (145). – с.116-123.

Мамедов А.К. Расчет тонкопленочных транзисторов с затвором Шоттки на основе аморфного полупроводника / А.К. Мамедов, Э.А. Алескеров, В.В. Ковальчук // Технология и конструирование в електронной аппаратуре. - 2003. - №2. - c. 18-21.

Зи С. Физика полупроводниковых приборов / С. Зи . - М. : Мир, 1984. – 456 с.

Лазар А.П. Моделирование радиоционной стойкости элементов логических КМОП интегральных микросхем / Лазар А.П., Коршунов Ф.П. // Доклады БГУИР. - 2013. - № 5 (75).

Попович А. Халькогенидная энергонезависимая память CRAM / А. Попович // Компоненты и технологии. – 2010. – № 2 (103). – c.52–54.

{References

Belous A.N., Solodukha V.A. and Shvedov S.V. (2015) Kosmicheskaya elektronika [Space electronics], Moskow, Tekhnosfera, 696 p.

Prinzie J., Appels K. and Kulis S. (2019) Optimal Physical Implementation of Radiation Tolerant High-Speed Digital Integrated Circuits in Deep-Submicron Technologies. Electronics, Vol. 8, Iss. 4, pp. 432. DOI: 10.3390/electronics8040432

Jeong K., Ro D., Lee G., Kang M. and Lee H. (2018) A Radiation-Hardened Instrumentation Amplifier for Sensor Readout Integrated Circuits in Nuclear Fusion Applications. Electronics, Vol. 7, Iss. 12, pp. 429. DOI: 10.3390/electronics7120429

Bockel B.V., Prinzie J. and Leroux P. (2019) Radiation Assessment of a 15.6ps Single-Shot Time-to-Digital Converter in Terms of TID. Electronics, Vol. 8, Iss. 5, pp. 558. DOI: 10.3390/electronics8050558

Wong H.P., Raoux S., Kim S., Liang J., Reifenberg J.P., Rajendran B., Asheghi M. and Goodson K.E. (2010) Phase Change Memory. Proceedings of the IEEE, Vol. 98, Iss. 12, pp. 2201-2227. DOI: 10.1109/jproc.2010.2070050

Rajendran B. (2009) Phase change memory technology, IBM Research. Available at: http://www.itrs.net/ITWG/Beyond_CMOS/2010Memory_April/Proponent/Nanowire%20PCRAM.pdf

Kychak V.M., Slobodian I.V. and Vovk V.L. (2019) Improvement of Radiation Stability of Energy-dependent Storage Devices Based on Chalcogenide Glassy Semiconductors. Visnyk of Vinnytsia Politechnical Institute, Vol. 145, Iss. 4., pp.116-123. DOI: 10.31649/1997-9266-2019-145-4

Mamedov A.K., Aleskerov E.A. and Koval'chuk V.V. (2003) Raschet tonkoplenochnykh tranzistorov s zatvorom Shottki na osnove amorfnogo poluprovodnika [Calculation of thin-film transistors with Schottky gate based on amorphous semiconductor], Tekhnologiya i konstruirovanie v elektronnoi apparature, No 2, pp. 18-21.

Zi S. (1984) Fizika poluprovodnikovykh priborov [Physics of semiconductor devices], Moskow, Mir, 456 p.

Lazar A.P. and Korshunov F.P. (2013) Radiation resistance simulation of logical cmos integrated circuits elements. Doklady BGUIR, Iss. 5(75). pp. 17-23.

Popovich A. (2010) Khal'kogenidnaya energonezavisimaya pamyat' CRAM [Chalcogenide non-volatile CRAM memory], Komponenty i tekhnologii. No (103), pp. 52–54.

Published

2020-03-30

How to Cite

Кичак , В. М., Слободян , І. В. and Вовк , В. Л. (2020) “Radiation-Resistant Memory Device Based on Chalcogenide Glassy Semiconductor”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (80), pp. 79-84. doi: 10.20535/RADAP.2020.80.79-84.

Issue

Section

Functional Electronics. Micro- and Nanoelectronic Technology