The Method of the Main Tone Detection in the Structure of Electromyographic Signals for the Task of Broken Human Communicative Function Compensation
DOI:
https://doi.org/10.20535/RADAP.2020.81.56-64Keywords:
communicative function; electromyographic signal; speech signal; main tone frequencyAbstract
In the work the method of electromyographic signals processing for the task of broken human communicative function compensation is developed. The method allows to detect the signs of main tone in the structure of electromyographic signals, that were recorded from the surface of patients neck near the vocal folds. Using this signs it is possible to identify the mentally spoken vowel and vocalised consonant phonemes and to identify the speech of patients with broken or lost communicative function. The developed method includes two stages, namely: preparatory and basic. The purpose of the preparatory stage is to obtain data on the individual features of the patient's speach, in particular the approximate value of the main tone frequency and the frequency interval of the main tone frequency when patient is trying to utter test sequences of sounds at certain points in time. These data are necessary to enable the use of the basic stage of the method, which involves the processing of electromyographic signals recorded in an arbitrary attempt to pronounce arbitrary sounds, words or phrases by the patient. It is proposed to processing the electromyographic signals by methods of spectral-correlation analysis using the sliding window method if presenting of such biosignals in the form of a piecewise stationary random process to detect the time intervals of the presence of main tone signs. Within each sliding window the estimates of the power spectral density distribution are calculated and averaged over the frequency and power within the predetermined interval of existence of the main tone frequency. The obtained averaged estimates make it possible to set the time intervals of the main tone presence and, accordingly, the subsequent identification of vowel and consonant vocalised phonemes. The experimentally registered EMG signal was processed by the developed method with different values of the sliding window width.
References
Перелік посилань
Кашкин В. Б. Введение в теорию коммуникации : учеб. пособие / В. Б. Кашкин. - М. : ФЛИНТА, 2013. - 224 с. ISBN 978-5-9765-1424-9
Ремизов А. Н. Медицинская и биологическая физика: учеб. для вузов / А. Н. Ремизов, А. Г. Максина, А. Я. Потапенко. - 4-е изд., перераб. и дополн. - М. : Дрофа, 2003. - 560 с.
Абакумов В. Г. Біомедичні сигнали. Генезис, обробка, моніторинг. / В. Г. Абакумов, О. І. Рибін , Й. Сватош. - Нора-прінт, 2001. - 516 с.
Jia Xueqian, Jinghong Li, and Yuyuan Du. Unvoiced Speech Recognition Based on One-Channel Facial Myoelectric Signal. The Sixth World Congress on Intelligent Control and Automation, 2008, pp. 9362- 9366.
Jorgensen C., Lee D., Agabon S. Sub Auditory Speech Recognition Based on EMG/EPG Signals. Proceedings of the International Joint Conference on Neural Networks, 2003, pp. 3128-3133.
Jou, S.-C., Maier-Hein, L., Schultz, T., Waibel, A.: Articulatory feature classification using surface electromyography. In: Acoustics, Speech and Signal Processing, ICASSP 2006 Proceedings, pp. I–605–I–608 (2006).
Impact of Different Speaking Modes on EMG-based Speech Recognition / Michael Wand, Szu-Chen Stan Jou, Arthur R. Toth, Tanja Schultz // Interspeech 2009, 6-10 September, Brighton UK. - pp. 648-651.
Subvocal Speech Recognition System based on EMG Signals / Yukti Bandi // International Conference on Computer Technology (ICCT 2015); International Journal of Computer Applications, pp. 31-35.
Санников В. Силой мысли // Популярная механика. - 2008. - №6(68). - с.72-75.
Brigham, K.; Vijaya Kumar, B.V.K., "Imagined Speech Classification with EEG Signals for Silent Communication: A Preliminary Investigation into Synthetic Telepathy", June 2010 4th International Conference on Bioinformatics and Biomedical Engineering.
Brigham, K.; Vijaya Kumar, B.V.K., "Subject Identification from Electroencephalogram (EEG) Signals During Imagined Speech", 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS) // September 2010.
Porbadnigk А.; Wester M.; Schultz, T., "EEG-Based Speech Recognition: Impact of Temporal Effects", 2009. 2nd International Conference on Bio-inspired Systems and Signal Processing (Biosignals 2009), Porto, Portugal.
Дозорська О. Ф. Відбір та опрацювання біосигналів для задачі відновлення комунікативної функції мови людини / О. Ф. Дозорська, В. Г. Дозорський, Є. Б. Яворська //Вісник Кременчуцького національного університету імені Михайла Остроградського. – Кременчук: КрНУ, 2017. - Випуск 4(105). - С. 9-14.
Дозорська О. Ф. Застосування нейрохронаксичної теорії фонації для задачі відновлення комунікативної функції мови людини / О. Ф. Дозорська, В. Г. Дозорський, Л. Є. Дедів, І. Ю. Дедів, Є. Б. Яворська // Znanstvena misel. - Slovenia, 2017. - №12. - с. 57-61.
Рауль Юссон. Певческий голос: исследование основных физиологических и акустических явлений певческого голоса. - М.: Музыка, 1974. - 263 с.
Методи оцінювання точності інформаційно-вимірювальних систем діагностики : Монографія / [Н. Б. Марченко, В. В. Нечипорук, О. П. Нечипорук, Ю. В. Пепа]. - К.: НАУ, 2014. - 377 с.
Омельченко А. В. Статистический синтез алгоритмов оценивания периода основного тона речевых сигналов / А. В. Омельченко, А. И. Песняков // Радиоэлектроника и информатика (Кибернетика). - М. : РИ, 1999, № 1. - С. 22-25.
Генерация криптографических ключей на основе голосовых сообщений / Е. А. Сулавко, А. В. Еременко, Р. В. Борисов // Прикладная информатика / Journal of Applied Informatics. - 2016. - №5(65). - С. 78-91.
Рихтер С. Г. Устройства преобразования и обработки информации в системах подвижной радиосвязи. - М.: Московский технический университет связи и информатики, 2006. - 66 с.
Ивченко Г. И., Медведев Ю. И. Введение в математическую статистику. - М. : Издательство ЛКИ, 2010. - 600 c.
item Дозорська О. Ф. Структура системи відбору біосигналів для задачі відновлення комунікативної функції людини / О. Ф. Дозорська, В. Г. Дозорський, Є. Б. Яворська, І. Ю. Дедів, Л. Є. Дедів, І. Ю. Паньків // Вісник Хмельницького національного університету. Технічні науки. - Хмельницький : ХНУ, 2019. - №2(271). - С.183–187.
References
Kashkyn V. B. (2013) Vvedenye v teoryiu kommunykatsyy [Introduction to Communication Theory]. Moskov, FLYNTA, 224 p.
Remizov A. N., Maksina A. G. and Potapenko A. Ya. (2003) Meditsinskaya i biologicheskaya fizika [Medical and biological physics]. Moskov, Drofa, Iss. 4, 560 p.
Abakumov V., Rybin O. and Svatosh I. (2001) Biomedychni syhnaly. Henezys, obrobka, monitorynh [Biomedical signals. Genesis, processing, monitoring]. Nora-print, 516 p.
Jia X., Wang X., Li J. and Du Y. (2006) Unvoiced Speech Recognition Based on One-Channel Facial Myoelectric Signal. 2006 6th World Congress on Intelligent Control and Automation, pp. 9362- 9366. DOI: 10.1109/wcica.2006.1713813
Jorgensen C., Lee D. and Agabon S. (2003) Sub auditory speech recognition based on EMG signals. Proceedings of the International Joint Conference on Neural Networks, 2003., pp. 3128-3133. DOI: 10.1109/ijcnn.2003.1224072
Jou S., Maier-Hein L., Schultz T. and Waibel A. (2006) Articulatory Feature Classification using Surface Electromyography. 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, pp. I–605–I–608. DOI: 10.1109/icassp.2006.1660093
Wand, Michael, Jou, Szu-Chen Stan, Toth Arthur R., Schultz Tanja (2009) Impact of different speaking modes on EMG-based speech recognition. INTERSPEECH 2009 10th Annual Conference of the International Speech Communication Association, pp. 648-651.
Yukti Bandi. Subvocal Speech Recognition System based on EMG Signals. International Journal of Computer Applications, International Conference on Computer Technology (ICCT 2015), pp. 31-35.
Sannikov V. Siloi mysli [By the power of thought]. Populyarnaya mekhanika, 2008, Vol. 6(68), pp.72-75.
Brigham K. and B. V. K. V. Kumar (2010) Imagined Speech Classification with EEG Signals for Silent Communication: A Preliminary Investigation into Synthetic Telepathy. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, pp. 1-4. DOI: 10.1109/icbbe.2010.5515807
Brigham K. and B. V. K. V. Kumar (2010) Subject identification from electroencephalogram (EEG) signals during imagined speech. 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1-8. DOI: 10.1109/btas.2010.5634515
Porbadnigk A.; Wester M.; Calliess J.; Schultz T. (2009). EEG-BASED SPEECH RECOGNITION - Impact of Temporal Effects. Proceedings of the International Conference on Bio-inspired Systems and Signal Processing, Volume 1: BIOSIGNALS, (BIOSTEC 2009) ISBN 978-989-8111-65-4, pages 376-381. DOI: 10.5220/0001554303760381
Yavorska Ye. B., Dozorska O. F., Dozorskyi V. G. (2017) Selection and processing of biosignals for the task of human communicative function restoring. Transactions оf Kremenchuk Mykhailo Ostrohradskyi national university, Issue 4(105), pp. 9-14.
Yavorska Ye. B., Dozorskyi V. G., Dozorska O. F., Dediv L. Ye., Dediv I. Yu. (2017) Application of the neurochronous phonation theory for the problem of human communicative function restoration. Znanstvena misel journal, Vol. 12, pp. 57-61.
Raul' Yusson. Pevcheskii golos: issledovanie osnovnykh fiziologicheskikh i akusticheskikh yavlenii pevcheskogo golosa [Singing voice: a study of the basic physiological and acoustic phenomena of the singing voice]. Moskov, Muzyka, 1974, 263 p.
Marchenko N. B., Nechyporuk V. V., Nechyporuk O. P., Pepa Yu.V. Metody otsiniuvannia tochnosti informatsiino-vymiriuvalnykh system diahnostyky [The methods for evaluating the accuracy of information- measuring systems of diagnosis] : Monohrafiia. Kyiv, NAU, 2014, 377 p.
Omel'chenko A. V., Pesnyakov A. I. Statisticheskii sintez algoritmov otsenivaniya perioda osnovnogo tona rechevykh signalov [Statistical synthesis of algorithms for estimating the main tone period of speech signals]. Radioelektronika i informatika (Kibernetika), Moskov, 1999, Vol. 1, pp. 22-25.
Sulavko E. A., Eremenko A. V., Borisov R. V. (2016) Cryptographic keys generation based on voice messages. Journal of Applied Informatics, Vol. 11, No. 5(65), pp. 76-89.
Rikhter S. G. Ustroistva preobrazovaniya i obrabotki informatsii v sistemakh podvizhnoi radiosvyazi [Devices for converting and processing information in mobile radio systems]. Moskov, Moskovskii tekhnicheskii universitet svyazi i informatiki, 2006, 66 p.
Ivchenko G. I., Medvedev Yu I. Vvedenie v matematicheskuyu statistiku [Introduction to Mathematical Statistics]. Moskov, LKI, 2010, 600 p.
Dozorska O. F., Dozorskyi V. G., Yavorska Ye. B., Dediv I. Yu., Dediv L. Ye., Pankiv I. Yu. (2019) The structure of biosignals selection system for the task of human communicative function restoring. Herald of Khmelnytskyi national university. Technical sciences, Vol. 2 (271), pp. 183–187. DOI: 10.31891/2307-5732-2019-271-2-183-187
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).