Software, mathematical and algorithmic tools for the computer electroencephalography system of humans epilepsy manifestations detecting

Authors

DOI:

https://doi.org/10.20535/RADAP.2021.84.66-77

Keywords:

EEG signal, 24 hours, epilepsy, mathematical model, algorithm, processing, covariate, software, Matlab, computer electroencephalographic systems

Abstract

Mathematical, algorithmic and software have been developed as a part of a computer electroencephalographic system. It is based on a 24 hours processing of an EEG signal in a form of a piecewise random sequence of white noises and an additive mixture of harmonic functions with different frequencies for hidden epilepsy time zones detection. The method of epilepsy detecting is based on a procedure of covariance treatment using covariators with basic harmonic functions of frequencies in the range from f1 to f2 within the sliding window, which moves along a sample of values of the EEG signal lasting 24 hours.

Based on the mathematical model and processing method, an algorithm and software have been developed for computer electroencephalographic systems using the MATLAB application package. According to the results of the EEG signal lasting 24 hours experimental data processing, it was found that at the time moments of epilepsy there is covariation average power increasing compared to time moments without epilepsy. Therefore, estimates of covariators EEG signal within 24 hours respond quantitatively to the manifestations of epilepsy.

To verify the developed mathematical, algorithmic support and software there was generated a test signal in the form of the harmonic components sum in given time zones, (characteristic of the EEG signal) at the time of epilepsy, and white noise - in time zones without epilepsy. The results of the generated test signal processing confirmed the correctness of the detection of the areas of harmonic components appearance that induce the manifestation of epilepsy.

Author Biography

M. O. Khvostivskyy , Тернопільський національний технічний університет імені Івана Пулюя

Доцент кафедри біотехнічних систем

References

Перелік посилань

Бутов И. С. Эпилептический характер полтергейста: исследование энцефалограмм фокальных лиц. РО «БеларусьКосмопоиск», 2009. Аномалия, №1. Часть 1. С. 32-36.

Cerf R., el H. el Ouasdad. Spectral analysis of stereo-electroencephalograms: preictal slowing in partial epilepsies. Biological Cybernetics. Vol. 83. PP. 399-405. (2000). DOI: 10.1007/s004220000178.

Кравцова Е. Ю., Шулакова К. В., Кравцов Ю. И., Кулеш А. А. Результаты спектрального анализа электроэнцефалограммы пациентов с фокальными эпилептическими приступами в межприступном периоде. Журнал неврологии и психиатрии им. С.С. Корсакова, 2014. Методы исследования и диагностики. №2. С.34-36.

Liang S. F., Wang H. C., Chang W. L. (2010) Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP Journal on Advances in Signal Processing, 853434. DOI: 10.1155/2010/853434.

Tsipouras M. G. (2019). Spectral information of EEG signals with respect to epilepsy classification. EURASIP Journal on Advances in Signal Processing. 10. DOI: 10.1186/s13634-019-0606-8.

Kennedy J. D., Gerard E. E. Continuous EEG Monitoring in the Intensive Care Unit. 2012. Current Neurology and Neuroscience Reports 12(4):419-28. DOI: 10.1007/s11910-012-0289-0.

Hirsch L. J., Kull L. L. Continuous EEG Monitoring in the Intensive Care Unit. 2004. American journal of electroneurodiagnostic technology. 44(3):137-58. DOI: 10.1080/1086508X.2004.11079478.

Бурденко Н. Н., Анохин И. К., Майорчик В. Е. Электрические явления в коре головного мозга при травматической эпилепсии. Вопр. нейрохир. № 3. C. 3-15.

Benbadis S. R., Rielo D. A., Lutsep H. L. (co). EEG Artifacts. eMedicine Neurology, 2019. URL: https://emedicine.medscape.com/article/1140247-overview.

Sucholeiki R., Benbadis S. R. Normal EEG Variants. eMedicine Neurology, 2019. URL: https://emedicine.medscape.com/article/1139291-overview.

Alarcon G., Binnie C. D., Elwes R. D. C., Polkey C. E. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalography and Clinical Neurophysiology. Volume 94, Issue 5, 1995. PP. 326-337. DOI: 10.1016/0013-4694(94)00286-T.

Старых Е. В. Дозированность гипоксических стимуляций у больных эпилепсией. Неврологический вестник. 2002. Т. XXXIV. Вып. 1-2. С.24-27.

Tzallas A. T., Tsipouras M. G., Fotiadis D. I. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci, 80510 (2007). DOI: 10.1155/2007/80510.

Ocak H. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process. 88(7), pp.1858–1867 (2008). DOI: 10.1016/j.sigpro.2008.01.026.

Bhattacharyya A., Pachori R. B., Upadhyay A., Acharya U. R. Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals. Appl. Sci. 7, 385 (2017). DOI: 10.3390/app7040385.

Айвазян С. О., Ширяев Ю. С. Видео-ЭЭГ-мониторинг в диагностике эпилепсии у детей. Журн. неврологии и психиатрии им. С.С. Корсакова, 2010. Т. 110. № 3. С. 72–76.

Friedman D., Claassen J., Hirsch L. J. Continuous electroencephalogram monitoring in the intensive care unit. Anesthesia & Analgesia: August 2009. Volume 109, Issue 2, pp. 506-523. DOI: 10.1213/ane.0b013e3181a9d8b5.

Young G. B., Jordan K. G., Doig G. S. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology. 1996; 47(1):83–9.

References

Butov I. S. (2009). Epyleptycheskyy kharakter polterheysta: doslidzhennya entsefalohramm fokal'nykh osib [The epileptic nature of the poltergeist: a study of encephalograms of focal faces]. RO "BelarusKosmopoisk". Anomaly, №1, Part 1, pp. 32-36. [In Russian].

Cerf R., el H. el Ouasdad. (2000). Spectral analysis of stereo-electroencephalograms: preictal slowing in partial epilepsies. Вiological Cybernetics, Vol. 83, pp. 399-405. DOI: 10.1007/s004220000178.

Kravtsova E. Y., Shulakova K. V., Kravtsov Y. I., Kulesh A. A. (2014). Rezul'taty spektral'noho analizu elektroentsefalohrammy patsiyentiv z fokal'nymy epileptychnymy pidkhodamy v mizhpryrodnomu periodi [The results of spectral analysis of the electroencephalogram of patients with focal epileptic seizures in the interictal period]. Journal of Neurology and Psychiatry im. S.S. Korsakova [Zhurnal nevrologii i psihiatrii im. S.S. Korsakova], Vol. 114(2), pp.34-36. [In Russian].

Liang S. F., Wang H. C., Chang W. L. (2010). Combination of EEG Complexity and Spectral Analysis for Epilepsy Diagnosis and Seizure Detection. EURASIP Journal on Advances in Signal Processing, Article number: 853434. DOI: 10.1155/2010/853434.

Tsipouras M. G. (2019). Spectral information of EEG signals with respect to epilepsy classification. EURASIP Journal on Advances in Signal Processing, Article number: 10. DOI: 10.1186/s13634-019-0606-8.

Kennedy J. D., Gerard E. E. (2012). Continuous EEG Monitoring in the Intensive Care Unit. Current Neurology and Neuroscience Reports, Vol. 12, Iss. 4, pp. 419-428. DOI: 10.1007/s11910-012-0289-0.

Hirsch L. J., Kull L. L. (2004). Continuous EEG Monitoring in the Intensive Care Unit. American Journal of Electroneurodiagnostic Technology, Vol. 44, Iss. 3, pp. 137-58. DOI: 10.1080/1086508X.2004.11079478.

Burdenko N. N., Anokhin I. K., Mayorchik V. E. (1945). Elektrychni yavlennya v korenevomu mozku pry travmatychniy epilepsiyi [Electrical phenomena in the cerebral cortex in traumatic epilepsy]. Vopr. Neurosurgery, pp. 3-15. [In Russian].

Benbadis S. R., Rielo D. A., Lutsep H. L. (2019). EEG Artifacts. Medscape.

Sucholeiki R., Benbadis S. R. (2019). Normal EEG Variants. Medscape.

Alarcon G., Binnie C.D., Elwes R. D. C., Polkey C. E. (1995). Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalography and Clinical Neurophysiology, Vol. 94, Iss. 5, pp. 326-337. DOI: 10.1016/0013-4694(94)00286-T.

Starykh E. V. (2002). Dozyrovannost' hipoksychnykh stymulyatsiy u velykykh epilepsiy [Dosage of hypoxic stimulations in patients with epilepsy]. Neurological Bulletin. T. XXXIV, Vyp. 1-2, pp.24-27. [In Russian].

Tzallas A. T., Tsipouras M. G., Fotiadis D. I. (2007). Automatic Seizure Detection Based on Time-Frequency Analysis and Artificial Neural Networks. Computational Intelligence and Neuroscience, Article ID: 80510. DOI: 10.1155/2007/80510.

Ocak H. (2008). Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Processing, Vol. 88, Iss. 7, pp.1858-1867. DOI: 10.1016/j.sigpro.2008.01.026.

Bhattacharyya A., Pachori R. B., Upadhyay A., Acharya U. R. (2017). Tunable-Q Wavelet Transform Based Multiscale Entropy Measure for Automated Classification of Epileptic EEG Signals. Applied Sciences, Vol. 7, Iss. 4, 385. DOI: 10.3390/app7040385.

Ayvazyan S. O., Shyryaev Yu. S. (2010). Vydeo-ÉÉH-monitorynh u diahnostytsi epilepsiyi u ditey [Video-EEG monitoring in the diagnosis of epilepsy in children]. Journal of Neurology and Psychiatry im. S.S. Korsakova [Zhurnal nevrologii i psihiatrii im. S.S. Korsakova], T.110, № 3, pp. 72–76. [In Russian].

Friedman D., Claassen J., Hirsch L. J. (2009). Continuous electroencephalogram monitoring in the intensive care unit. Anesthesia & Analgesia, Vol. 109, Iss. 2, pp. 506-523. DOI: 10.1213/ane.0b013e3181a9d8b5.

Young G. B., Jordan K. G., Doig G. S. (1996). An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology, Vol. 47, Iss. 1, pp. 83–9. DOI: 10.1212/wnl.47.1.83.

Published

2021-03-30

How to Cite

Хвостівський , М. О., Хвостівська, Л. В. and Бойко Р. P. (2021) “Software, mathematical and algorithmic tools for the computer electroencephalography system of humans epilepsy manifestations detecting”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (84), pp. 66-77. doi: 10.20535/RADAP.2021.84.66-77.

Issue

Section

Radioelectronics Medical Technologies