Аutomatic Transmitter Power Control System for Combined Mobile Digital Troposcatter-Radiorelay Stations

Authors

DOI:

https://doi.org/10.20535/RADAP.2021.84.40-47

Keywords:

automatic transmitter power control system, reverse communication channel, mobile digital troposcatter-radiorelay station, troposcatter communication channel, multipath propagation of radio waves, signal fluctuations, signal fading, slow fading, resource efficiency, Rayleigh-Rice distribution function, densities of probability laws distribution

Abstract

The article examines the automatic microwave transmitter power control system (ATPCS). The ATPCS makes it possible to compensate for signal fluctuations by changing the transmitter power so that the signal at reception remains constant. The use of ATPCS is relevant for the microwave communication operations over multipath channels with fading, which include troposcatter communication channels. The application of the ATPCS system for perspective combined mobile digital troposcatter-radiorelay stations (MDTRRS) is considered. It is noted in the article that the ATPCS is most effective in combat slow fading, season fading and “diurnal variation”. However, the presence of the ATPCS in digital troposcatter communication stations also makes it possible to combat fast fading by using a short-term increase the transmitter power. This makes it possible to significantly reduce the time of the signal level falls below the threshold level and thereby to increase the reliability of communication. An approximate calculation of the signal delay time on the paths of troposcatter communication lines is presented in the article. The difficulties of implementing the ATPCS are investigated and a possible structural diagram of such system for MDTRRS is shown. It is noted that the implementation of the ATPCS makes it difficult to create a powerful microwave transmitter, including a solid-state transmitter. The most problematic is the setting of a threshold value for the probability of error and the threshold level of the received signal or signal-to-noise ratio. It is noted that the requirement for the correct choice of the regulation threshold level is a certain complexity of the implementation of the ATPCS. In the article an indicator of the energy gain of the ATPCS of a microwave station itself is introduced and tables of this indicator calculating for the Rayleigh-Rice law, Rayleigh's law and the logarithmic-normal law are presented. Expressions for the normalized correlation function, the radius of the temporal correlation of the troposcatter communication channel, the probability integral and the Rayleigh-Rice distribution function are presented. The transition from a function of two variables to a function of one variable is carried out and the Rayleigh-Rice distribution function is expressed in terms of the Bessel functions of the first kind. The dependence of the distribution of amplitudes according to the Rayleigh-Rice law on the reliability of communication is shown. In conclusion, it is proposed to determine the threshold value and the range of power adjustment of the ATPCS, including the MDTRRS.

Author Biographies

V. М. Pochernyaev, Odessa National O.S. Popov Academy of Telecommunications

Doc. of Sci(Techn.), Prof.

V. S. Povhlib, Kyiv College of Communication


References

Перелік посилань

Патент 112217 Україна. C2. Мобільна цифрова тропосферно-радіорелейна станція / Заявник і патентовласник Почерняєв В. М., Повхліб В. С.; заявл. 12.09.2014; опубл. 10.08.2016 // Бюл. № 15.

Патент 120288 Україна. Мобільна цифрова тропосферно-радіорелейна станція / Почерняєв В. М., Повхліб В. С., Зайченко В. В.; заявл. 29.08.2017; опублік. 11.11.2019 // Бюл. № 21.

Наритник Т. М. Цифрові тропосферні та радіорелейні лінії: основи розрахунку / Т. М. Наритник, В. М. Почерняєв, В. С. Повхліб // Одеса: ОНАЗ ім. О.С. Попова. — 2019. — c. 169.

Гостев В. И. Нечеткие регуляторы в системах автоматического управления / В. И. Гостев. — К. : «Радіоаматор». — 2008. — с. 972.

Payasi Y., Shrivastava A., Jain A. Negotiation based adaptive distributed power control algorithm in wireless communication system // 2015 International Conference on Computer, Communication and Control (IC4) (10-12 Sept. 2015). — Indore, India, 2015. — PP. 1-5. DOI: 10.1109/IC4.2015.7375575.

Bistritz I. and Bambos N. The Power of Consensus: Optimal Distributed Multichannel Wireless Transmitter Power Control // ICC 2019 - 2019 IEEE International Conference on Communications (ICC) (20-24 May 2019). — Shanghai, China, 2019. — PP. 1-6. DOI: 10.1109/ICC.2019.8761391.

Pal A. Transmit Power Reduction ≠ Proportional Power Savings: Applicability of Transmit Power Control in Large-Scale Wireless Sensor Networks // IEEE Internet of Things Magazine. — 2020. — Vol. 3, No. 1. — PP. 20-24. DOI: 10.1109/IOTM.0001.1900067.

Lee W., Kim M. and Cho D. Deep Power Control: Transmit Power Control Scheme Based on Convolutional Neural Network // IEEE Communications Letters. — 2018. — Vol. 22, No. 6. — PP. 1276-1279. DOI: 10.1109/LCOMM.2018.2825444.

Yang C. Channel Estimation for Inverse Power Control in Wireless Communication Networks // 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP) (23-25 Sept. 2015). — Adelaide, SA, Australia, 2015. — PP. 138-141. DOI: 10.1109/IIH-MSP.2015.26.

Singh K. Optimal Power Control in Decentralized Gaussian Multiple Access Channels // IEEE Communications Letters. — 2018. — Vol. 22, No. 9. — PP. 1938-1941. DOI: 10.1109/LCOMM.2018.2856240.

Shi J., Tao L., Chen M. and Yang Z. Power control for relay-assisted device-to-device communication underlaying cellular networks // 2015 International Conference on Wireless Communications & Signal Processing (WCSP) (15-17 Oct. 2015). — Nanjing, China, (2015). — PP. 1-6. DOI: 10.1109/WCSP.2015.7341217.

Feng C., Zhong Y., Quek T. Q. S. and Wu G. Power control in full duplex networks: Area spectrum efficiency and energy efficency // 2017 IEEE International Conference on Communications (ICC) (21-25 May 2017). — Paris, (2017). — PP. 1-6. DOI: 10.1109/ICC.2017.7997482.

Sharma M. K., Murthy C. R. and Vaze R. Asymptotically Optimal Uncoordinated Power Control Policies for Energy Harvesting Multiple Access Channels With Decoding Costs // IEEE Transactions on Communications. — 2019. — Vol. 67, No. 3. — PP. 2420-2435. DOI: 10.1109/TCOMM.2018.2879926.

Rasti M., Hasan M., Le L. B. and Hossain E. Distributed Uplink Power Control for Multi-Cell Cognitive Radio Networks // IEEE Transactions on Communications. — 2015. — Vol. 63, No. 3. — PP. 628-642. DOI: 10.1109/TCOMM.2015.2397885.

Eliardsson P., Wiklundh K., Axell E., Stenumgaard P. Mitigation of co-channel interference by transmit power control // 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC) (16-22 Aug. 2015). — Dresden, Germany, 2015. — PP. 189-193. DOI: 10.1109/ISEMC.2015.7256156.

Немировский А. С. Борьба с замираниями при передаче аналоговых сигналов / А. С. Немировский. — М. : Радио и связь. — 1984. — c. 208.

Гусятинский И. А. Дальняя тропосферная радиосвязь / И. А. Гусятинский, А. С. Немировский, А. В. Соколов, В. Н. Троицкий. — М. : Связь. — 1968. — c. 248.

Стратонович Р. Л. Избранные вопросы теории флуктуации в радиотехнике / Р. Л. Стратонович. — М. : Сов. радио. — 1961. — c. 558.

Барк Л. С. Таблицы распределения Релея-Райса / Л. Н. Большев, П. И. Кузнецов, А. П. Черенков. — М. : ВЦ АН СССР. — 1964. — c.248.

Ватсон Г. Н. Теория бесселевых функций: ч. 1. / Г. Н. Ватсон. — М. : ИИЛ. — 1949. — c. 797.

Грей Э. Функции Бесселя и их приложения к физике и механике / Э. Грей, Г. Б. Мэтьюз. — М. : ИИЛ. — 1953. — c. 372.

Стратонович P. Л. Принципы адаптивного приема / P. Л. Стратонович. — М. : Сов. радио. — 1973. — c. 144.

References

Pochernyaev V. M., Povkhlib V. S. C2. Mobile digital tropospheric radio relay station. Patent 112217 Ukraine, application 12.09.2014, published on 08.10.2016. Bulletin №15.

Pochernyaev V. M., Povkhlib V. S, Zaichenko V. V. Mobile digital tropospheric radio relay station. Patent 120288 Ukraine, application 29.08.2017, published on 11.11.2019. Bulletin №21.

Narytnyk T. M., Pochernyaev V. M., Povkhlib V. S. (2019). Digital tropospheric and radio relay lines: basics of calculation. Odessa: ONAТ O.S.Popova, p.169. [In Ukrainian].

Gostev V.I. (2008). Fuzzy controllers in automatic control systems. K:"Radioamator", p. 972. [In Russian].

Payasi Y., Shrivastava A., Jain A. (2015). Negotiation based adaptive distributed power control algorithm in wireless communication system. 2015 International Conference on Computer, Communication and Control (IC4), Indore, India, pp. 1-5. DOI: 10.1109/IC4.2015.7375575.

Bistritz I. and Bambos N. (2019). The Power of Consensus: Optimal Distributed Multichannel Wireless Transmitter Power Control. ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, pp. 1-6. DOI: 10.1109/ICC.2019.8761391.

Pal A. (2020). Transmit Power Reduction ≠ Proportional Power Savings: Applicability of Transmit Power Control in Large-Scale Wireless Sensor Networks. IEEE Internet of Things Magazine, Vol. 3, No. 1, pp. 20-24. DOI: 10.1109/IOTM.0001.1900067.

Lee W., Kim M. and Cho D. (2018). Deep Power Control: Transmit Power Control Scheme Based on Convolutional Neural Network. IEEE Communications Letters, Vol. 22, No. 6, pp. 1276-1279. DOI: 10.1109/LCOMM.2018.2825444.

Yang C. (2015). Channel Estimation for Inverse Power Control in Wireless Communication Networks. 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Adelaide, SA, Australia, pp. 138-141. DOI: 10.1109/IIH-MSP.2015.26.

Singh K. (2018). Optimal Power Control in Decentralized Gaussian Multiple Access Channels. IEEE Communications Letters, Vol. 22, No. 9, pp. 1938-1941. DOI: 10.1109/LCOMM.2018.2856240.

Shi J., Tao L., Chen M. and Yang Z. (2015). Power control for relay-assisted device-to-device communication underlaying cellular networks. 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, pp. 1-6, DOI: 10.1109/WCSP.2015.7341217.

Feng C., Zhong Y., Quek T. Q. S. and Wu G. (2017). Power control in full duplex networks: Area spectrum efficiency and energy efficency. 2017 IEEE International Conference on Communications (ICC), Paris, pp. 1-6. DOI: 10.1109/ICC.2017.7997482.

Sharma M. K., Murthy C. R. and Vaze R. (2019). Asymptotically Optimal Uncoordinated Power Control Policies for Energy Harvesting Multiple Access Channels With Decoding Costs. IEEE Transactions on Communications, Vol. 67, No. 3, pp. 2420-2435. DOI: 10.1109/TCOMM.2018.2879926.

Rasti M., Hasan M., Le L. B. and Hossain E. (2015). Distributed Uplink Power Control for Multi-Cell Cognitive Radio Networks. IEEE Transactions on Communications, Vol. 63, No. 3, pp. 628-642. DOI: 10.1109/TCOMM.2015.2397885.

Eliardsson P., Wiklundh K., Axell E., Stenumgaard P. (2015). Mitigation of co-channel interference by transmit power control. 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), Dresden, Germany, pp. 189-193. DOI: 10.1109/ISEMC.2015.7256156.

Nemirovsky A. S. (1984). Coping with fading in analog signal transmission. M.: Radio and communication, p.208. [In Russian].

Gusyatinsky I. A. (1968) Distant tropospheric radio communication, Moskow, Communication, p. 248. [In Russian].

Stratonovich R. L. (1961). Selected questions of the theory of fluctuations in radio engineering, Moskow, Soviet radio, p. 558. [In Russian].

Bark L. S. Bolshev L. N., Kuznetsov P. I., Cherenkov A. P. (1964). Rayleigh-Rice distribution tables., Мoskow, pp. 248. [In Russian].

Watson G. N. (1949) The theory of Bessel functions: part 1, Moskow, pp. 797. [In Russian].

Gray E., Matthews G.B. (1953) Bessel Functions and Their Applications to Physics and Mechanics, Moskow, IIL, pp. 372. [In Russian].

Stratonovich R. L. (1973) Principles of adaptive reception, Moskow, Soviet radio, pp. 144. [In Russian].

Published

2021-03-30

How to Cite

Почерняєв, В. М., Повхліб, В. С. and Сивкова, Н. М. (2021) “Аutomatic Transmitter Power Control System for Combined Mobile Digital Troposcatter-Radiorelay Stations”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (84), pp. 40-47. doi: 10.20535/RADAP.2021.84.40-47.

Issue

Section

Telecommunication, navigation, radar systems, radiooptics and electroacoustics