Effects of Precipitation on the Performance of Shipboard Radar Installations

Authors

DOI:

https://doi.org/10.20535/RADAP.2020.83.47-54

Keywords:

radar system, weather event, plane electromagnetic wave, absorption and scattering of electromagnetic radiation

Abstract

Precipitation may affect a ship's radar performance, namely, attenuate a radar electromagnetic wave and thus hinder objects detection within the precipitation zone. The presence of precipitation along a path of electromagnetic wave propagation leads to a decrease in the range and probability of objects
detection. When an electromagnetic wave encounters precipitation particles, part of the carried energy converts into heat and dissipates in different directions. The reflected energy propagates toward the ship's radar antenna and creates false signals. This paper presents the results of modeling of
electromagnetic wave attenuation with regard to precipitation intensity in the precipitation zone. The proposed matrix of energy attenuation helps to establish the physics of the endoatmospheric
object and forecast the range of objects detection based on it. The study shows that radiophysical information about the desired object can be obtained by using the attenuation matrix with data on the strength of echo signals. It was established that coefficients in the echo signal attenuation matrix were influenced by precipitation intensity and polarization angles inside the precipitation zone. The greatest attenuation was seen with particles taking the form of flattened ellipsoids (this is common
during intense rainfall episodes). The elongated particles also were found to cause attenuation of the electromagnetic wave. Particles with a spherical shape, which are commonly formed as fog, were found to have no implications associated with the
electromagnetic signal attenuation. The results of the study can be useful in estimating attenuation of echo signals that propagate from objects to the ship's radar system under precipitation.

References

Перелік посилань

Трофименко І. В. Визначення перспективних напрямків розвитку навігаційного забезпечення судноводіння з використанням радіолокаційних систем //Новітні технології. — 2017. — №. 2. — С. 29-42.

Путятин В. Г. Влияние осадков на разрешающую способность радиолокационной станции по угловым координатам / В.Г. Путятин, Д.В. Корбан, А.И. Князь // Реєстрація, зберігання і обробка даних. — 2017. — Т. 19, № 4. — С. 26–34.

Yadnya M. S. Attenuation model from drop size distribution of rain for millimeter wave communication channel / M. S. Yadnya, I. W. Sudiartha // 2017 11th International Conference on Telecommunication Systems Services and Applications (TSSA). — IEEE, 2017. — PP. 1-4. DOI:10.1109/TSSA.2017.8272936.

Veselovska G. Modeling of scattering of electromagnetic waves by snow crystals / G. Veselovska, G. Khlopov // 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF). — IEEE, 2017. — PP. 351-354. DOI:10.1109/YSF.2017.8126646.

Norouzian F. Rain attenuation at millimeter wave and low-THz frequencies / F. Norouzian, E. Marchetti, M. Gashinova, E. Hoare, C. Constantinou, P. Gardner, M. Cherniakov // IEEE Transactions on Antennas and Propagation. — 2019. — Vol. 68, № 1. — PP. 421-431. DOI:10.1109/TAP.2019.2938735.

Hong E. Terrestrial link rain attenuation measurements at 84 GHz /E. Hong, S. Lane, D. Murrell, N. Tarasenko, C.,Christodoulou // 2017 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). — IEEE, 2017. — PP. 1-2. DOI:10.1109/USNC-URSI-NRSM.2017.7878267.

Grabner M. Analysis of propagation of electromagnetic waves in atmospheric hydrometeors on low-elevation paths / M. Grabner, P. Pechac, P. Valtr // Radio-engineering. — 2018. — Vol. 27, № 1. — PP. 29-33. DOI:10.13164/re.2018.0029.

Nagel D. Detection of rain areas with airborne radar / D. Nagel // 2017 18th International Radar Symposium (IRS). — IEEE, 2017. — PP. 1-7. DOI:10.23919/IRS.2017.8008094.

Averyanova Y. Segregating deformation of scatter-ing rain-drops using several receive antennas with different polarization angles / Y. Averyanova, A. Rudiakova, F.J. Yanovsky // 2017 18th International Radar Symposium (IRS). — IEEE, 2017. — PP. 1-6. DOI:10.23919/IRS.2017.8008260.

Navarro K. M. M. Realistic rain model for the estimation of the rainfall rate from radar measurements / K.M.M. Navarro, E. Costa, C.A.M. Rodriguez, S. Cruz-Pol, L.V.L. Colón // IEEE Transactions on Antennas and Propagation. — 2019. — Vol. 67, № 9. — PP. 6104-6114. DOI:10.1109/TAP.2019.2921006.

Иванов О. В. Распространение электромагнитных волн в анизотропных и бианизотропных слоистых структурах / О. В. Иванов. — Ульяновск : УлГТУ, 2010. — 262 с.

Коростелев А. А. Теоретические основы радиолокации / А.А. Коростелев, Н.Ф. Климов, Ю.А. Мельник. — Москва: Советское радио, 1978. — 607 с.

Седлецкий Р. М. Эффективная площадь рассеяния идеально проводящих тел простейшей формы в средах с комплексной проницаемостью / Р. М. Седлецкий // Журнал Радиоэлектроники. — 2001. — № 9. — С. 1-4.

Билетов М. В. Радиометеорология / М.В. Билетов, В.П. Кузьменко, Н.Ф. Павлов, Н.В. Цивенко. — Москва: Воениздат, 1984. — 208 с.

Шупяцкий А. Б. Радиолокационное измерение интенсивностей и некоторых других характеристик осадков / А.Б. Шупяцкий. – Москва: Гидрометеоиздат, 1961. — 190 с.

Setijadi E. Effect of temperature and multiple scattering on rain attenuation of electromagnetic waves by a simple spherical model / E. Setijadi, A. Matsushima, N. Tanaka, G. Hendrantoro // Progress in Electromagnetics Research. — 2009. — Vol. 99. — PP. 339-354. DOI:10.2528/PIER09102609.

Odedina M. O., Afullo T. J. (2010) Determination of rain attenuation from electromagnetic scattering by spherical raindrops: Theory and experiment. RadioScience, Vol. 45, Iss. 1, pp. 1-15. DOI:10.1029/2009RS004192.

References

Trofimenko I. V. (2017) Determination of perspective directions of navigation support development shipping with the use of radar systems. EMERGING TECHNOLOGIES, Iss. 2(4), pp. 29-42.

Putyatin V. G., Korban D. V., Knyaz A. I. (2017) Influence of precipitations on angular coordinates resolution for a radar. DATA RECORDING, STORAGE & PROCESSING, Vol. 19, Iss. 4, pp. 26-34. DOI:10.35681/1560-9189.2017.19.4.142919.

Yadnya M. S., Sudiartha I. W. (2017) Attenuation model from drop size distribution of rain for millimeter wave communication channel. 11th International Conference on Telecommunication Systems Services and Applications (TSSA), pp. 1-4. DOI:10.1109/TSSA.2017.8272936.

Veselovska G., Khlopov G. (2017) Modeling of scattering of electromagnetic waves by snow crystals. IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), pp. 351-354. DOI:10.1109/YSF.2017.8126646.

Norouzian F., Marchetti E., Gashinova M., Hoare E., Constantinou C., Gardner P., Cherniakov M. (2020) Rain attenuation at millimeter wave and low-THz frequencies. IEEE Transactions on Antennas and Propagation, Vol. 68, Iss. 1, pp 421-431. DOI:10.1109/TAP.2019.2938735.

Hong E., Lane S., Murrell D., Tarasenko N., Christodoulou C. (2017) Terrestrial link rain attenuation measurements at 84 GHz. United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), pp. 1-2. DOI:10.1109/USNC-URSI-NRSM.2017.7878267.

Grabner M., Pechac P., Valtr P. (2018) Analysis of Propagation of Electromagnetic Waves in Atmospheric Hydrometeors on Low-Elevation Paths. Radioengineering, Vol. 27, Iss. 1, pp. 29-33. DOI:10.13164/re.2018.0029.

Nagel D. (2017) Detection of rain areas with airborne radar. 18th International Radar Symposium (IRS), pp. 1-7. DOI:10.23919/IRS.2017.8008094.

Averyanova Y., Rudiakova A., Yanovsky F. J. (2017) Segregating deformation of scattering rain-drops using several receive antennas with different polarization angles. 18th International Radar Symposium (IRS), pp. 1-6. DOI:10.23919/IRS.2017.8008260.

Navarro K. M. M., Costa E., Rodriguez C. A. M., Cruz-Pol S., Colón L. V. L. (2019) Realistic Rain Model for the Estimation of the Rainfall Rate from Radar Measurements. IEEE Transactions on Antennas and Propagation, Vol. 67, Iss. 9, pp. 6104-6114. DOI:10.1109/TAP.2019.2921006.

Ivanov O.V. (2010). Rasprostranenie e`lektromagnitny`kh voln v anizotropny`kh i bianizotropny`kh sloisty`kh strukturakh [Propagation of electromagnetic waves in anisotropic and bianisotropic layered structures]. Ulyanovsk State Technical University, Ulyanovsk, 262 p. [In Russian].

Korostelev A. A., Klimov N. F., Melnik Yu. A. (1978) Teoreticheskieosnovy` radiolokaczii [Theoretical foundations of radar]. Moscow: Soviet radio, 607 p. [In Russian].

Sedletsky R. M. (2001) E`ffektivnaya ploshhad` rasseyaniya ideal`no provodyashhikh tel prostejshej formy` v sredakh s kompleksnoj proniczaemost`yu [Effective scattering area of ideally conducting bodies of the simplest shape in media with complex permeability]. Journal of Radioelectronics, Vol. 9, pp. 1-4. [In Russian].

Biletov M. V., Kuzmenko V. P., Pavlov N. F. and Tsivenko N. V. (1984) Radiometeorologiya [Radiometeorology]. Moscow: Military Publishing, 208 p. [In Russian].

Shupyatskiy A. B. (1961) Radiolokaczionnoe izmerenie intensivnostej i nekotory`kh drugikh kharakteristik osadkov [Radar measurement of intensities and some other characteristics of precipitation]. Moscow: Gidrometeoizdat, 190 p. [In Russian].

Setijadi E., Matsushima A., Tanaka N., Hendrantoro G. (2009) Effect of temperature and multiple scattering on rain attenuation of electromagnetic waves by a simple spherical model. Progress in Electromagnetics Research, Vol. 99, pp. 339-354. DOI:10.2528/PIER09102609.

Odedina M. O., Afullo T. J. (2010) Determination of rain attenuation from electromagnetic scattering by spherical raindrops: Theory and experiment. Radio Science, Vol. 45, Iss. 1, pp. 1-15. DOI:10.1029/2009RS004192.

Published

2020-12-30

How to Cite

Ревенко, В. Ю. (2020) “Effects of Precipitation on the Performance of Shipboard Radar Installations”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (83), pp. 47-54. doi: 10.20535/RADAP.2020.83.47-54.

Issue

Section

Telecommunication, navigation, radar systems, radiooptics and electroacoustics