Experimental Study of the Effect of Partial Dielectric Filling on Electrodynamic Characteristics and Rectangular Waveguide Dimensions

Authors

DOI:

https://doi.org/10.20535/RADAP.2022.88.69-76

Keywords:

rectangular waveguide, partial dielectric filling, effective permittivity, constant distribution, electrical dimensions

Abstract

The results of an experimental study of the effect of partial dielectric filling (PDF) on the electrodynamic characteristics and dimensions of a rectangular waveguide are presented.

The results of the experimental study are compared with the calculated ones obtained using an approximate method for determining the effective permittivity and propagation constant of a partially filled waveguide (PWF) presented in [1]. The approximate method differs from the existing ones in that it is not necessary to solve transcendental dispersion equations to determine the propagation constant in a rectangular waveguide with a PDF. In particular, the results of a theoretical calculation of the dependences of the size of the wide wall of the PWF with cross-sectional dimensions of 23 × 10 mm on the change in the fill factor along the wide wall of the waveguide at a frequency of 10 GHz, the wavelength, the wave impedance of the PWF, and the propagation constant on the change in the fill factor along the wide wall, waveguide in the frequency band 6–14 GHz for modification 2–1–2 (thin dielectric plates near the side walls) and 1–2 (thin dielectric plate near one side wall) for the H10 type wave are presented.

Experimental studies were carried out using a laboratory setup consisting of a signal generator, a voltage ratio meter, a measuring line based on a rectangular waveguide, to the output of which a short circuit was connected. Dielectric plates (PTFE Ф4) 10 mm wide, 2 mm and 4 mm thick, and 253 mm long were installed inside the rectangular waveguide of the measuring line. The maximum relative error of the results of experimental studies for modifications 2-1-2, 1-2 does not exceed 15%, in particular, for modification 2-1-2 it is less than for 1-2.

The presented results confirm the feasibility and high accuracy of calculating the electrodynamic characteristics of the PWF by the approximate method [1].

The reliability and validity of the results obtained is ensured by a sufficiently high convergence of the calculation results with the experimental ones, under boundary conditions with known results, the convergence of the obtained formulas in units of measurement.

References

Перелік посилань

Манойлов В. П. Розрахунок хвилеводів з частковим діелектричним заповненням / В. П. Манойлов, В. В. Чухов // Вісник НТУУ „КПІ”. Радіотехніка. Радіоапаратобудування. — 2006. — Вип. 33. — С. 91–100. DOI: 10.20535/RADAP.2006.33.91-100.

Castillo-Tapia, P., Mesa, F., Yakovlev, A., Valerio, G., Quevedo-Teruel, O. Study of Forward and Backward Modes in Double-Sided Dielectric-Filled Corrugated Waveguides / P. Castillo-Tapia, F. Mesa, A. Yakovlev, G. Valerio, O. Quevedo-Teruel // Sensors. — 2021. — Vol. 21(18), 6293. — pp. 1-15. https://doi.org/10.3390/s21186293.

Теорія електромагнітного поля та основи техніки НВЧ / Cоколов С. В. та ін. за заг. ред. Г. С. Воробйова. — Суми: Сумський державний університет. — 2011. — 393 с.

Kyoung-Ho Kim, Q-Han Park. Effective medium characterization of partially-filled rectangular waveguides / Kyoung-Ho Kim, Q-Han Park // Journal of the Korean Physical Society. — 2014. — Vol. 64, No. 6. — pp. 771–774. https://doi.org/10.3938/jkps.64.771.

Weng Q., Lin Q., Wu H. An Efficient Semianalytical Modal Analysis of Rectangular Waveguides Containing Metamaterials with Graded Inhomogeneity / Weng Qianru, Lin Qian, Wu Haifeng // International Journal of Antennas and Propagation. — Vol. 2021, Article ID 6107378. https://doi.org/10.1155/2021/6107378.

Moradi, A. Electrostatic theory of rectangular waveguides filled with anisotropic media / A. Moradi // Scientific Reports. — 2021. — Vol. 11, Article No. 24522. — pp. 771–774. https://www.nature.com/articles/s41598-021-04293-6.

Bogle A. et al. Electromagnetic Material Characterization using a Partially-Filled Rectangular Waveguide / A. Bogle, M. Havrilla, D. Nyquis, L. Kempel, E. Rothwell // Journal of Electromagnetic Waves and Applications. — 2012. — Vol. 19, No. 10. — pp. 1291-1306. doi: 10.1163/156939305775525909.

Casula, G. A., et al. A Review on Improved Design Techniques for High Performance Planar Waveguide Slot Arrays / G. A. Casula, G. Mazzarella, G. Montisci, G. A. Muntoni // Electronics. — 2021. — Vol. 10(11), 1311. — pp. 1-24. https://doi.org/10.3390/electronics10111311.

Kapusuz K. Y., et al. Partially Filled Half-Mode Substrate Integrated Waveguide Leaky-Wave Antenna for 24 GHz Automotive Radar / K. Y. Kapusuz, A. V. Berghe, S. Lemey, H. Rogier // IEEE Antennas and Wireless Propagation Letters. — 2021. — Vol. 20, No. 1. — pp. 33-37. https://ieeexplore.ieee.org/document/9261094.

Почерняєв В. М., Сивкова Н. М. Пристрій управління потужністю НВЧ на частково заповненому діелектриком прямокутному хвилеводі // В. М. Почерняєв, Н. М. Сивкова // Інфокомунікаційні та комп’ютерні технології. — 2022. — Vol. 1, No. 01. — pp. 81-89. DOI: 10.36994/2788-5518-2021-01-01-06.

Егоров Ю. В. Частично заполненные прямоугольные волноводы / Ю. В. Егоров. — Москва: Cов. Радио, 1967. — 216 с.

Бергер М. Н., Капилевич Б. Ю. Прямоугольные волноводы с диэлектриками / М. Н. Бергер, Б. Ю. Капилевич. — М.: Сов. радио, 1973. — 256 с.

Каращук Н. М., Манойлов В. П., Фриз С. П., Чухов В. В. Дослідження впливу часткового діелектричного заповнення на розміри прямокутного хвилеводу / Н. М. Каращук, В. П. Манойлов, С. П. Фриз, В. В. Чухов // Проблеми створення, випробування та застосування складних інформаційних систем: Збірник наукових праць. – Житомир: ЖВІ. — 2018. — Вип. 15. — С. 103–117.

Електродинаміка та поширення радіохвиль, Ч. 2. Випромінювання та поширення електромагнітних хвиль / Шокало В. М. та ін.; за ред. В. М. Шокало. — Харків: ХНУРЕ, Колегіум. — 2010. — 435 с.

Фторопласт Ф-4 листовий 6-05-810-88. ПП «Стандарт Комплект».

References

Manoilov V. P., Chukhov V. V. (2006). Calculation of the waveguied with the shape dielectric fulfills. Visnyk NTUU KPI Seriia Radiotekhnika Radioaparatobuduvannia, Vol. 33, pp. 91–100. doi: 10.20535/RADAP.2006.33.91-100. [In Ukrainian].

Castillo-Tapia, P., Mesa, F., Yakovlev, A., Valerio, G., Quevedo-Teruel, O. (2021). Study of Forward and Backward Modes in Double-Sided Dielectric-Filled Corrugated Waveguides. Sensors, Vol. 21(18), Iss. 6293, pp. 1-15. DOI: 10.3390/s21186293.

Vorobiov H. S., Cokolov S. V. eds. (2011). Teoriia elektromahnitnoho polia ta osnovy tekhniky NVCh [Electromagnetic field theory and microwave engineering]. Sumy, Sumskyi derzhavnyi universytet Publ., 393 p. [In Ukrainian].

Kyoung-Ho Kim, Q-Han Park (2014). Effective medium characterization of partially-filled rectangular waveguides. Journal of the Korean Physical Society, Vol. 64, Iss. 6, pp. 771–774. DOI:10.3938/jkps.64.771.

Weng Q., Lin Q., Wu H. (2021). An Efficient Semianalytical Modal Analysis of Rectangular Waveguides Containing Metamaterials with Graded Inhomogeneity. International Journal of Antennas and Propagation, Vol. 2021, Article ID 6107378. DOI: 10.1155/2021/6107378.

Moradi, A. (2021). Electrostatic theory of rectangular waveguides filled with anisotropic media. Scientific Reports, Vol. 11, Article number: 24522, pp. 771–774. DOI: 10.1038/s41598-021-04293-6.

Bogle A., Havrilla M., Nyquis D., Kempel L., Rothwell E. (2012). Electromagnetic Material Characterization using a Partially-Filled Rectangular Waveguide. Journal of Electromagnetic Waves and Applications, Vol. 19, Iss. 10, pp. 1291-1306. DOI: 10.1163/156939305775525909.

Casula, G. A., Mazzarella, G., Montisci, G., Muntoni, G. A. (2021). A Review on Improved Design Techniques for High Performance Planar Waveguide Slot Arrays. Electronics, Vol. 10, Iss. 11, ID 1311, pp. 1-24. DOI: 10.3390/electronics10111311.

Kapusuz K. Y., Berghe A. V., Lemey S., Rogier H. (2021). Partially Filled Half-Mode Substrate Integrated Waveguide Leaky-Wave Antenna for 24 GHz Automotive Radar. IEEE Antennas and Wireless Propagation Letters, Vol. 20, Iss. 1, pp. 33-37. DOI: 10.1109/LAWP.2020.3038201.

Pochernyaev V. N. & Syvkova N. M. (2022). Microwave power control device on a rectangular waveguide partially filled by dielectric. Infocommunication and computer technologies, Vol. 1, Iss. 1, pp. 81-89. DOI: 10.36994/2788-5518-2021-01-01-06. [In Ukrainian].

Ehorov Yu. V. (1967). Chastychno zapolnennye priamouholnye volnovody [Partially Filled Rectangular Waveguides]. Moskva, Sov. radyo Publ., 216 p. [In Russian].

Berher M. N., Kapylevych B. Yu. (1973). Priamouholnye volnovody s dielektrykamy [Rectangular waveguides with dielectrics]. Moskva, Sov. radyo Publ., 256 p. [In Russian].

Karashchuk N. M., Manoilov V.P., Fruz S. P., Chukhov V.V. (2018). Doslidzhennia vplyvu chastkovho dielektrychnoho zapovnennia na rosmiry priamokutnoho khvylevodu [Investigation of the influence of partial dielectric filling on the dimensions of a rectangular waveguide]. Problemy stvorennia, vyprobuvannia ta zastosuvannia skladnykh informatsiinykh system: Zbirnyk naukovykh prats, Vol. 15, pp. 103–117. [In Ukrainian].

Shokalo V. M., eds. (2010). Elektrodynamika ta poshyrennia radiokhvyl, Ch.2. Vyprominiuvannia ta poshyrennia elektromahnitnykh khvyl [Electrodynamics and propagation of radio waves. P.2. Radiation and propagation of electromagnetic waves]. Kharkiv, KhNURE, Kolehium Publ., 435 p. [In Ukrainian].

Ftoroplast F-4 sheet 6-05-810-88. PE "Standard K".

Published

2022-06-30

How to Cite

Каращук , Н. М., Манойлов , В. П., Чухов , В. В., Герасименко , В. В., Кондратов , О. М., Ципоренко , В. Г. and Ставiсюк Р. Л. (2022) “Experimental Study of the Effect of Partial Dielectric Filling on Electrodynamic Characteristics and Rectangular Waveguide Dimensions: ”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (88), pp. 69-76. doi: 10.20535/RADAP.2022.88.69-76.

Issue

Section

Electrodynamics. Microwave devices. Antennas