Controlled Brewster Effect in the Scattering of Electromagnetic Waves on Pseudo-Rotating Lattices of Dielectric Resonators

Authors

DOI:

https://doi.org/10.20535/RADAP.2023.94.5-12

Keywords:

lattice, dielectric resonator, scattering, Brewster effect, rotation, coupled oscillations

Abstract

Various conditions for the occurrence of anomalous scattering, in which most of the power is emitted by the lattice only in the direction of propagation of the incident wave, are analyzed. An analytical model for the scattering of plane electromagnetic waves on arrays of pseudo-rotating dielectric resonators (DRs) of cylindrical and rectangular shape is developed. New analytical relations are derived for the functions that determine the coupling between the field of a plane wave and the main types of magnetic oscillations of the rotated DR. The angles between the axis of the DR and the directions of propagation of plane waves, at which the coupling between the DR and the incident wave reaches extreme values, are studied. The conditions of non-resonant scattering and scattering with the absence of a reflected petal, known as the Brewster effect, were established. The general relations between the angles of inclination of DRs, polarization and the angles of incidence of waves on lattices, which lead to special cases of scattering, were found. There is a similarity between non-resonant scattering and the known Malyuzhynets effect, which describes the passage of waves through lattices of other types. Scattering models for lattices of rotated cylindrical and rectangular DRs were built. The difference between the classical Brewster effect and the petal-free cases of scattering on lattices built on the basis of the use of pseudo-rotating DRs was noted. In particular, it’s shown that, unlike other methods of realizing metasurfaces of this class, cases of scattering without petals on lattices of pseudo-rotating resonators are possible when the angles of incidence are changed in a wider band. The obtained theoretical results allow us to propose a new class of devices built on the basis of the use of pseudo-rotating DRs, to significantly reduce the calculation time and to optimize complex multi-resonator structures. New types of lattices built on pseudo-rotating DRs can be used to design a wide class of antennas, as well as multiplexing devices in terahertz, infrared, and optical wavelength range communication systems.

Author Biography

O. O. Trubin, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

Doctor of Technical Sciences, Professor, Institute of Telecommunication Systems

References

References

Kupriianov A. S., Khardikov V. V., Domina K., Prosvirnin S. L., Wei Han, Tuz V. R. (2023). Experimental observation of diffractive retroreflection from a dielectric metasurface. J. Appl. Phys., Vol. 133, 163101; 14 p. doi: 10.1063/5.0145338.

Tamayama Y. (2023). Controlling the polarization dependence of the complex transmission spectrum using the Brewster effect in metafilms. Optics Express, Vol. 31, No. 20, pp. 33656–33669. doi:10.1364/OE.501281.

Tiukuvaara V., Martin O. J. F., Achouri K. (2023). Quadrupolar susceptibility modeling of substrated metasurfaces with application to the generalized Brewster effect. Optics Express, Vol. 31, Iss. 14, pp. 22982-22996. doi:10.1364/OE.488529.

Liao Y.‑H., Hsu W.‑L., Yu C.‑Y., Wang C.‑M. (2023). Antireflection of optical anisotropic dielectric metasurfaces. Scientific Reports, Vol. 13, Article number: 1641. doi:10.1038/s41598-023-28619-8.

Fan H., Chu H., Luo H., Lai Y., Gao L., Luo J. (2022). Brewster metasurfaces for ultrabroadband reflectionless absorption at grazing incidence. Optica, Vol. 9, No. 10, pp. 1138–1148. doi:10.1364/OPTICA.472221.

Prosvirnin S. L., Khardikov V. V., Domina K. L., Maslovskiy O. A., Kochetova L. A., Yachin V. V. (2021). Non-specular rejection by a planar resonant metasurface. ResearchGate.

Lavignei G., Caloz C. (2021). Generalized Brewster effect using bianisotropic metasurfaces. Optics Express, Vol. 29, No. 7, pp. 11361–11370. doi:10.1364/OE.423078.

Popov V., Tretyakov S., Novitsky A. (2019). Brewster effect when approaching exceptional points of degeneracy: Epsilon-near-zero behavior. Phys. Rev. B, Vol. 99, 045146, pp. 1–10. doi:10.1103/PhysRevB.99.045146.

Krasnok A., Baranov D., Li H., Miri M.-A., Monticone F., Alu A. (2019). Anomalies in light scattering (Review). Advances in Optics and Photonics, Vol. 11, Iss. 4, pp. 892–951. doi:10.1364/AOP.11.000892.

Sreekanth K. V., El Kabbash M., Medwal R., et al. (2019). Generalized Brewster Angle Effect in Thin-Film Optical Absorbers and Its Application for Graphene Hydrogen Sensing. ACS Photonics, Vol. 6, pp. 1610−1617. doi:10.1021/acsphotonics.9b00564.

Lavigne G., Caloz C. (2018). Extending the Brewster Effect to Arbitrary Angle and Polarization using Bianisotropic Metasurfaces. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 1–2. doi: 10.48550/arXiv.1801.08517.

Thirion-Lefevre L., Guinvarc’h R. (2018). The double Brewster angle effect. Comptes Rendus Physique, Vol. 19, Iss. 1–2, pp. 43-53. doi:10.1016/j.crhy.2018.02.003.

Adamson P. (2017). Enhanced visibility of graphene: the effect of the Brewster angle. Optica Applicata, Vol. XLVII, No. 3, pp. 363–371. DOI: 10.5277/oa170303.

Kuznetsov A. I., Miroshnichenko A. E., Brongersma M. L., Kivshar Y. S., Luk’yanchuk B. (2016). Optically resonant dielectric nanostructures. Review. SCIENCE, Vol 354, Iss. 6314, pp. 1–8. DOI: 10.1126/science.aag2472.

Paniagua-Dominguez R., Yu Y. F., Miroshnichenko A. E., et al. (2015). Generalized Brewster effect in dielectric metasurfaces. Nature Communications, Vol. 7, Article number: 10362. DOI: 10.1038/ncomms10362.

Tamayama, Y. (2015). Brewster effect in metafilms composed of bi-anisotropic split-ring resonators. Opt. Lett., Vol. 40, Iss. 7, pp. 1382–1385. doi: 10.1364/OL.40.001382.

Staude I., Miroshnichenko A. E., Decker M., et al. (2013). Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano, Vol. 7, Iss. 9, pp. 7824–7832. DOI: 10.1021/nn402736f.

Kryzhanovskiy V. V., Kryzhanovskiy S. V., Steshenko S. O., Chistyakova O. V. (2008). Resonant properties of planar waveguide --- lamellar grating system. Radiophysics and electronics, Vol. 13, Iss. 3, pp. 481–488.

Watanabe, R., Iwanaga, M. & Ishihara, T. (2008). S-polarization Brewster’s angle of stratified metal–dielectric metamaterial in optical regime. Phys. Stat. Sol. b, Vol. 245, Iss. 12, pp. 2696–2701. doi:10.1002/pssb.200879899.

Kazansky V. B., Tuz V. R., Yudintsev D. V. (2007). Scattering of Gaussian wavebeamsby a limited sequence of alternating arrays of dielectricbars. Visnyk of V. N. Karazin Kharkiv National University, series “Radio Physics and Electronics”, Vol. 756 Radiophysics and electronics, Iss. 11, pp. 82-86.

Tamayama, Y., Nakanishi, T., Sugiyama, K. & Kitano, M. (2006). Observation of Brewster’s effect for transverse-electric electromagnetic waves in metamaterials: Experiment and theory. Phys. Rev. B, Vol. 73, 193104. doi: 10.1103/PhysRevB.73.193104.

Maradudin A. A., Luna R. E., Mendez E. R. (1993). The Brewster effect for a one-dimensional random surface. Waves in Random Media, Vol. 3, Iss. 1, pp. 51–60. doi:10.1088/0959-7174/3/1/006.

Azzam R. M. A., Ugbo E. E. (1989). Contours of constant pseudo-Brewster angle in the complex ɛ plane and an analytical method for the determination of optical constants. Appl. Opt., Vol. 28, Iss. 24, pp. 5222–5228. doi:10.1364/AO.28.005222.

Elshazly-Zaghloul M., Azzam R. M. A. (1982). Brewster and pseudo-Brewster angles of uniaxial crystal surfaces and their use for determination of optical properties. J. Opt. Soc. Am., Vol. 72, Iss. 5, pp. 657–661. doi:10.1364/JOSA.72.000657.

Born M., Wolf E. (1964). Principles of optics. Pergamon Press. Second ed. 855 p.

Veinstein L. A. (1969). Open resonators and open waveguides. Published by Golem Press, Golem series in electromagnetics, Vol. 2, 439 p.

Trubin A. A. (2009). Electromagnetic waves scattering on a lattice of Dielectric Resonators. 2009 19th International Crimean Conference Microwave & Telecommunication Technology, Sevastopol, Ukraine, pp. 405-407. doi: 10.1109/TELSKS.2009.5339480.

Ilchenko M. E., Trubin A. A. (2004). Electrodynamics of Dielectric Resonators. Kyiv, Naukova Dumka, 265 p.

Trubin A. A. (2016). Lattices of Dielectric Resonators. Springer International Publishing Switzerland, 171 p. doi: 10.1007/978-3-319-25148-6.

Downloads

Published

2023-12-30

How to Cite

Trubin, . O. O. (2023) “Controlled Brewster Effect in the Scattering of Electromagnetic Waves on Pseudo-Rotating Lattices of Dielectric Resonators”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (94), pp. 5-12. doi: 10.20535/RADAP.2023.94.5-12.

Issue

Section

Electrodynamics. Microwave devices. Antennas