Temperature Dependence of the Graphene Hall Sensor for Special Applications

Authors

DOI:

https://doi.org/10.20535/RADAP.2025.100.%25p

Keywords:

Hall sensor, QFS graphene, temperature dependence, off-set signal, spinning current method

Abstract

This study investigates the effect of temperature on the parameters of Hall sensors based on quasi-free-standing (QFS) graphene. The graphene layers were obtained using chemical vapor deposition (CVD) on silicon carbide (4H-SiC (0001)) substrates. This approach ensures high material uniformity and reduces the influence of impurities, allowing the fabrication of sensors with improved metrological characteristics.

The experimental study was conducted in a temperature range from 30 to 120°C. The dependence of the Hall signal on temperature was measured, and sensor stability was evaluated in long-term tests. To enhance measurement accuracy, the current-spinning technique was employed, effectively reducing parasitic signal components arising from thermoelectric effects and material inhomogeneities.

The experimental results indicate that the dependence of the Hall signal on temperature is close to linear for most samples, simplifying temperature correction in practical applications. Some samples exhibit a lower level of temperature-induced variations, which may be attributed to structural variations in the graphene layer or an uneven distribution of residual stresses in the material. The overall signal variation does not exceed 10%, which is acceptable for most technological applications.

The obtained results confirm the potential of QFS graphene for Hall sensors capable of operating under varying temperature conditions. Further research may focus on optimizing sensor structures, improving fabrication methods, and developing algorithms for compensating temperature effects.

References

References

1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, Vol. 306, Iss. 5696, pp. 666–669. doi:10.1126/science.1102896.

2. Geim, A. K. and Novoselov, K. S. (2007). The rise of graphene. Nature Materials, Vol. 6, Iss. 3, pp. 183–191. doi:10.1038/nmat1849.

3. Biel, W., Ariola, M., Bolshakova, I., Brunner, K. J., Cecconello, M., et al. (2022). Development of a concept and basis for the DEMO diagnostic and control system. Fusion Engineering and Design, Vol. 179, 113122. doi:10.1016/j.fusengdes.2022.113122.

4. Schwierz, F. (2010). Graphene transistors. Nature Nanotechnology, Vol. 5, Iss. 7, pp. 487–496. doi:10.1038/nnano.2010.89.

5. Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, Vol. 10. Iss. 8, pp. 569–581. doi:10.1038/nmat3064.

6. Bolshakova, I., Strikha, M., Kost, Ya., Shurygin, F., Mykhashchuk, Yu., Wang, Z. and Neumaier, D. (2021). Dependence of maximal sensitivity of the magnetic field Hall sensors based on graphene on temperature. Sensor Electronics and Microsystem Technologies, Vol. 18, Iss. 3, pp. 29–36. doi:10.18524/1815-7459.2021.3.241056.

7. Tang, C., Wang, Y., Li, Y., Zeng, S., Kong, L., et al. (2023). A review of graphene-based temperature sensors. Microelectronic Engineering, Vol. 278, 112015. doi:10.1016/j.mee.2023.112015.

8. El-Ahmar, S., Szary, M., Ciuk, T., Prokopowicz, R., Dobrowolski, A., Jagiello, J. and Ziemba, M. (2022). Graphene on SiC as a promising platform for magnetic field detection under neutron irradiation. Applied Surface Science, Vol. 590, 152992. doi:10.1016/j.apsusc.2022.152992.

9. Zhang, Y., Shi, J., Chen, C., Li, N., Xu, Z., Liu, L., et al. (2018). Structural evolution of defective graphene under heat treatment and gamma irradiation. Physica E: Low-dimensional Systems and Nanostructures, Vol. 97, pp. 151-154. doi:10.1016/j.physe.2017.11.007.

10. Xu, Y., Zhang, K., Brusewitz, C., Wu, X. and Hofsass, H. C. (2013). Investigation of the effect of low energy ion beam irradiation on monolayer graphene. AIP Advances, Vol. 3, Iss. 7, 072120. doi:10.1063/1.4816715.

11. Hossain, Md. Z., Rumyantsev, S. L., Shur, M. S. and Balandin, A. A. (2013). Reduction of 1/f noise in graphene after electron-beam irradiation. Applied Physics Letters, Vol. 102, Iss. 15, 153512. doi:10.1063/1.4802759.

12. Dobrowolski, A., Jagiello, J., Pietak-Jurczak, K., Wzorek, M., Czolak, D., and Ciuk, T. (2024). Spectroscopic properties of close-to-perfect-monolayer quasi-free-standing epitaxial graphene on 6HSiC(0001). Applied Surface Science, Vol. 642, 158617. DOI:10.1016/j.apsusc.2023.158617.

13. Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. A., and Starke, U. (2009). Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation. Physical Review Letters, Vol. 103, 246804. DOI:10.1103/PhysRevLett.103.246804.

14. Strupinski, W., Grodecki, K., Wysmolek, A., Stepniewski, R., Szkopek, T., et al. (2011). Graphene Epitaxy by Chemical Vapor Deposition on SiC. Nano Letters, Vol. 11, Iss. 4, pp. 1786–1791. DOI:10.1021/nl200390e.

15. Ciuk, T., Nouvellon, C., Monteverde, F., Stanczyk, B., Przyborowska, K., Czolak, D., and El-Ahmar, S. (2024). High-Temperature Thermal Stability of a Graphene Hall Effect Sensor on Defect-Engineered 4H-SiC(0001). IEEE Electron Device Lett., Vol. 45, Iss. 10, pp. 1957-1960. DOI:10.1109/LED.2024.3436050.

16. Ciuk, T., Kozlowski, R., Romanowska, A., Zagojski, A., Pietak-Jurczak, K., et al. (2023). Defect-engineered graphene-on-silicon-carbide platform for magnetic field sensing at greatly elevated temperatures. Carbon Trends, Vol. 13, 100303. DOI:10.1016/j.cartre.2023.100303.

17. Pietak, K., Jagiello, J., Dobrowolski, A., Budzich, R., Wysmolek, A., and Ciuk, T. (2022). Enhancement of graphene-related and substrate-related Raman modes through dielectric layer deposition. Appl. Phys. Lett., Vol. 120, Iss. 6, 063105. DOI:10.1063/5.0082694.

18. Popovic, R. S. (2004). Hall Effect Devices (2nd ed.). Bristol and Philadelphia: Institute of Physics Publishing.

19. Munter, P. J. A. (1990). A low-offset spinning current Hall plate. Sensors and Actuators A: Physical, Vol. 22, Iss. 1-3, pp. 743–746. doi:10.1016/0924-4247(89)80069-X.

20. Steiner, R., Haeberli, A., Steiner, F.-P., and Maier, C. (2000). Spinning current method of reducing the offset voltage of a Hall device. United States Patent, US6064202A.

Downloads

Published

2025-06-30

Issue

Section

Functional Electronics. Micro- and Nanoelectronic Technology

How to Cite

“Temperature Dependence of the Graphene Hall Sensor for Special Applications” (2025) Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (100), pp. 59–66. doi:10.20535/RADAP.2025.100.%p.