Method for Rotating Cryptographic Keys Based on Time Tokens for Radio-Electronic Medical Modules with Limited Resources

Authors

DOI:

https://doi.org/10.64915/RADAP.2025.102.%25p

Keywords:

cryptographic key, time tokens, HMAC, tolerance window, FreeRTOS, STM32L4, ESP32, medical sensors

Abstract

 The article presents a new approach to periodic rotation of symmetric cryptographic keys for embedded medical radio-electronic modules with limited resources. The method is based on locally generated time tokens formed using a hardware real-time clock or alternative synchronization mechanisms via Bluetooth Low Energy or internal microcontroller timer. Each device independently calculates a new key using a cryptographic hash function and initial vector, avoiding transmission of service messages over the network.

An adaptive tolerance window was introduced to increase resistance to small time shifts. The time token structure is presented in two formats, allowing optimal balance between timestamp accuracy, required memory, and service data capabilities.

The method is implemented on STM32 and ESP32 platforms under FreeRTOS through the ''key_rotator'' module. Lightweight Speck and Ascon algorithms were used for sensor data encryption.

Experimental studies showed 50% reduction in power consumption compared to traditional schemes, generation delay under 1 ms, and synchronization restoration in over 98% of cases after power outages. The proposed approach combines high security, energy efficiency, and stability for medical modules with limited resources.

References

References

1. Rozlomii I., Yarmilko A. and Naumenko S. (2024). Resource-efficient solutions for data security at the network level of the Medical Internet of Things. Conference Proceedings, Vol. 3892, pp. 171-182.

2. Gaurav A., Psannis K. and Perakovic D. (2022). Security of Cloud-Based Medical Internet of Things (MIoTs): A Survey. International Journal of Software Science and Computational Intelligence, Vol. 14, pp. 1-16. DOI: 10.4018/IJSSCI.285593.

3. Rozlomii I., Yarmilko A. and Naumenko S. (2024). Security and Efficiency Models for Cyber-Physical Systems in Medical Devices. 2024 IEEE 19th International Conference on Computer Science and Information Technologies (CSIT), pp. 1-4. DOI: 10.1109/CSIT65290.2024.10982678.

4. Akhtar N., Rahman S., Sadia H. and Perwej Dr. (2021). A Holistic Analysis of Medical Internet of Things (MIoT). Journal of Information and Computational Science, Vol. 11, pp. 209-222.

5. Rozlomii I., Naumenko S., Mykhailovskyi P. and Monarkh V. (2024). Resource-Saving Cryptography for Microcontrollers in Biomedical Devices. 2024 IEEE 5th KhPI Week on Advanced Technology (KhPIWeek), pp. 1-5. DOI: 10.1109/KhPIWeek61434.2024.10877958.

6. Wamusi R., Asiku D., Adebo T., Aziku S., Simon Peter K., Zaward M. and Guma A. (2024). A Comprehensive Review on Cryptographic Techniques for Securing Internet of Medical Things: A State-of-the-Art, Applications, Security Attacks, Mitigation Measures, and Future Research Direction. Mesopotamian Journal of Artificial Intelligence in Healthcare, Vol. 2024, pp. 135-169. DOI: 10.58496/MJAIH/2024/016.

7. Wu T.-Y., Wang T., Lee Y.-Q., Zheng W., Kumari S. and Kumar S. (2021). Improved Authenticated Key Agreement Scheme for Fog-Driven IoT Healthcare System. Security and Communication Networks, Vol. 2021, pp. 6658041. DOI: 10.1155/2021/6658041.

8. Xie Q., Zhao Z., Jiang L., Jiang S., Khan S., Wang W. and Wu K. (2024). Poster Abstract: Threshold Cryptography-based Authentication Protocol for Remote Healthcare. 2024 23rd ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 303-304. DOI: 10.1109/IPSN61024.2024.00052.

9. Benoist E., Bignens S. and Kreutz A. (2020). Patient Empowerment in IoT for eHealth: How to Deal With Lost Keys. Book Chapter, pp. 140-153. DOI: 10.4018/978-1-7998-2444-2.ch007.

10. Kim T., Kim W., Seo D. and Lee I. (2021). Secure Encapsulation Schemes Using Key Recovery System in IoMT Environments. Sensors, Vol. 21, No. 10, pp. 3474. DOI: 10.3390/s21103474.

11. Zunaidi M. R., Sayakkara A. and Scanlon M. (2024). A Digital Forensic Methodology for Encryption Key Recovery from Black-Box IoT Devices. 2024 12th International Symposium on Digital Forensics and Security (ISDFS), pp. 1-7. DOI: 10.1109/ISDFS60797.2024.10527284.

12. Chaudhari D., Bhende M., Quraishi A., AlGhamdi A., Keshta I., Soni M., Singh B., Byeon H. and Shabaz Dr. M. (2025). A Hybrid PKI and Spiking Neural Network Approach for Enhancing Security and Energy Efficiency in IoMT-Based Healthcare 5.0. SLAS Technology, Vol. 32, 100284. DOI: 10.1016/j.slast.2025.100284.

13. Höglund J., Lindemer S., Furuhed M. and Raza S. (2020). PKI4IoT: Towards public key infrastructure for the Internet of Things. Computers & Security, Vol. 89, 101658. DOI: 10.1016/j.cose.2019.101658.

14. Nelson M. (2024). Improving Security and Compliance for Medical Devices With Public Key Infrastructure. Journal of Clinical Engineering, Vol. 49, No. 4.

15. Xu Z., Liang W., Li K.-C., Xu J., Zomaya A. Y. and Zhang J. (2022). A Time-Sensitive Token-Based Anonymous Authentication and Dynamic Group Key Agreement Scheme for Industry 5.0. IEEE Transactions on Industrial Informatics, Vol. 18, No. 10, pp. 7118-7127. DOI: 10.1109/TII.2021.3129631.

16. Abduljabbar Z. A., Omollo Nyangaresi V., Al Sibahee M. A., Ghrabat M. J. J., Ma J., Qays Abduljaleel I. and Aldarwish A. J. Y. (2022). Session-Dependent Token-Based Payload Enciphering Scheme for Integrity Enhancements in Wireless Networks. Journal of Sensor and Actuator Networks, Vol. 11, No. 3, pp. 55. DOI: 10.3390/jsan11030055.

17. Muhajjar R. A., Flayh N. A. and Al-Zubaidie M. (2023). A Perfect Security Key Management Method for Hierarchical Wireless Sensor Networks in Medical Environments. Electronics, Vol. 12, No. 4, pp. 1011. DOI: 10.3390/electronics12041011.

18. Gupta M. and Kumar B. S. (2023). Lightweight Secure Session Key Protection, Mutual Authentication, and Access Control (LSSMAC) for WBAN-Assisted IoT Network. IEEE Sensors Journal, Vol. 23, No. 17, pp. 20283-20293. DOI: 10.1109/JSEN.2023.3295381.

19. Wu Q., Han Z., Mohiuddin G. and Ren Y. (2023). Distributed Timestamp Mechanism Based on Verifiable Delay Functions. Computer Systems Science and Engineering, Vol. 44, pp. 1633-1646. DOI: 10.32604/csse.2023.030646.

20. Kumar S. and Tiwari R. (2020). Optimized content centric networking for future internet: Dynamic popularity window based caching scheme. Computer Networks, Vol. 179, pp. 107434. DOI: 10.1016/j.comnet.2020.107434.

21. Jadhav S. and Chaudhari B. S. (2024). Chapter 2 -- Embedded systems for low-power applications. TinyML for Edge Intelligence in IoT and LPWAN Networks, pp. 13-26. DOI: 10.1016/B978-0-44-322202-3.00007-5.

22. Vakaliuk T. A., Andreiev O. V., Nikitchuk T. M., Osadchyi V. V. and Dubyna O. F. (2023). Using the ESP32 Microcontroller for Physical Simulation of the Operation of a Broadband Radio Communication Modem. Radio Electronics, Computer Science, Control, No. 3, pp. 206. DOI: 10.15588/1607-3274-2023-3-20.

Downloads

Published

2025-12-30

Issue

Section

Information Security

How to Cite

“Method for Rotating Cryptographic Keys Based on Time Tokens for Radio-Electronic Medical Modules with Limited Resources” (2025) Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (102), pp. 58–65. doi:10.64915/RADAP.2025.102.%p.