Dust Mask with a Pressure Drop Measuring Device

Authors

DOI:

https://doi.org/10.20535/RADAP.2019.78.43-51

Keywords:

harmful airborne particles, dust mask, half mask, fit density, filter, pressure gauge

Abstract

Introduction. Respiratory diseases are the leaders among the scope of occupational diseases. This result from air pollution in working area by hazardous air disperse particles, gases, vapours or using individual respiratory protective devices (IRPD), which do not allow control of respiratory-protection period and thus increase the risk of occupational diseases.
Theoretical analysis of protective efficiency of dust respirators and research purpose statement. The use of dust respirators is associated with the following operational problems: protection factor is significantly reduced during the work activities, so it is needed to replace filtering components very often; non filtrated air leaks through the obturation line of half mask as a result of no uniform distribution of pressure; control of respiratory-protection period of filters is impossible.
Design of dust respirator with differential pressure meter. The solution of the problem is suggested as change of dust respirator by adding of differential pressure meter consisting of pressure control sensor, unit of control and information processing, appliance for information recording and storage, signal unit, and power source. The suggested design of dust respirator enables improvement of protection properties and reduction of air leakage through the gaps between obturation line and worker’s face occurring during the work activities because of head harness weakening or exceeding of resistance of filters performance and determining of critical state of their exploitation.
Algorithm development for pressure meter operation of dust respirator. Pressure sensor is placed under the respirator mask. Its output is connected to input of unit of control and information processing, which transmits data to signal unit and appliance for information recording and storage. After the processing the information is compared to settings and control signals are transmitted to turn on light and sound indicators. Moreover, the information is recorded to be stored in appliance for information recording and storage. Alert sounds of variable duration and cycles depending on pressure under the mask during the air inhalation are easy-to-see in darkness and are likely to attract worker’s attention.
Experimental studies of workability of dust respirator with pressure meter. Laboratory workability check of pressure meter of respirator has demonstrated similarity of measuring results of pressure difference in filters in case of dusting. The periods were determined for pressure meter signals the need in filter change and in case of half mask sliding during the work activities resulting in new gaps.
Discussion. The main feature of the developed dust respirator in comparison with the common ones in sale is permanent monitoring of pressure difference under the mask. It enables determining of actual protection period of filters and provides the right place of mask on face as being controlled by the maintenance of minimum value of air exhaustion under the mask. The level of worker protection during work activities wearing IRPD is determined with respect to the indicators. Thus, addition of pressure meter into IRPD enables improvement of workers’ protection from dust during their work activities.
Conclusions. The design of pressure meter for dust respirator was developed. The algorithm of meter operation was proposed; it enables control of change of breath pressure difference using increase of filters resistance resulting from dust deposits on their surface, improper seal of respirator half mask and worker’s face during the work activities.

Author Biographies

S. I. Cheberiachko, National Technical University "Dnipro Polytechnic"

Cheberyachko S. I.

Yu. І. Cheberiachko, National Technical University "Dnipro Polytechnic"

Cheberyachko Yu. I.,

O. V. Deriuhin , National Technical University "Dnipro Polytechnic"

Deryugin O. V.

D. V. Slavinskyi , National Technical University "Dnipro Polytechnic"

Slavinskyi D. V.

References

Перелік посилань

Zhipeng L. Head form and N95 Filtering Facepiece Respirator Interaction: Contact Pressure Simulation and Validation / L. Zhipeng, J.Y. Jingzhou, Z. Ziqing // Journal of Occupational and Environmental Hygiene. - 2012. - No 9. - pp. 46-58.

Gutierrez A. Designing an improved respirator for automotive painters / Alma Maria Jennifer A. Gutierrez, Melissa D. Galang, Rosemary R. Seva, Michelle C. Lu, Diana Rose S. Ty // International Journal of Industrial Ergonomics - 2014 - No 44. - pp. 131-139.

Plebani C. Filtering facepieces: effect of oily aerosol load on penetration through the filtering material / C. Plebani, S. Listrani and M.Di. Luigi // Med. Lav. - 2010. - No 101(4). - pp. 293-302.

Janssen L.L. Efficiencyofdegraded electretsfilters: Part I: laboratory testing against NaCland DOP before and after exposure to workplace aerosols / L.L. Janssen, J.O. Bidwell, H.E. Mullins, T.J. Nelson // J. Int. Soc. Resp. Prot. - 2003. - Vol 20. - pp. 71-80.

Groce D. Three-dimensional facial parameters and principal component scores: Association with respirator fit / D Groce., S. Guffey, D.J. Viscusi // Journalof the International Society for Respiratory Protection. - 2010. - № 27(1). - Р. 1-15.

Zhou S. AnIntelligentFFRwithaSelf-AdjustableVentilationFan / S. Zhou, H. Li, Sh. Shen, S. Li, W. Wang, X. Zhang, J. Yang // Journal of Occupational and Environmental Hygiene. - 2017. - V.21. - P. 23-33.

Пат. № 122788 Україна, МПК A62B 23/02. Фільтрувальний респіратор / В.І. Голінько, Ю.І. Чеберячко, В.Ю. Фрундін, С.І. Чеберячко, Д.І. Радчук, Д.В. Славінський; заявник ДВНЗ "НГУ". - №u 2017 07973; заяв. 31.07.2017 ; опубл. 25.01.2018, Бюл. № 2.

ДСТУ EN 143:2002/Зміна № 1:2015 (EN 143:2000/A1:2006, IDT) Засоби індивідуального захисту органів дихання. Протиаерозольні фільтри. Вимоги, випробування, маркування.Держстандарт України, 2016 р. - 24 c.

Заболотній С.В. Цифрове оброблення сигналів: посібник для студентів [Електронний ресурс] / Авт.-укл. С.В. Заболотній; за ред. проф. Ю.Г. Леги; Черкас. держ. технол. ун-т. - Черкаси: ЧДТУ, 2010. - 119 с.

Чеберячко С.І. Дослідження захисної ефективності фільтрувальних респіраторів при циклічному потокові повітря // Сучасні ресурсозберігаючі технології гірничого виробництва. - 2013. - №2 (12). - С.205-212.

JCGM 100:2008. Evaluation of measurement data - Guide to the Expression of Uncertainty in Measurement. - JCGM, 2008. - 120 p.

Zhuang Z. Correlation Between Quantitative Fit Factors and Workplace Protection Factors Measured in Actual Workplace Environments at a Steel Foundry / Z. Zhuang, C.C. Coffey, P.A. Jensen; D.L. Campbell; R.B. Lawrence; W.R. Myers // American Industrial Hygiene Association Journal. - 2004. - Vol. 64, - № 6. - Р. 730-739.

ДСТУ EN 529:2006 Засоби індивідуального захисту органів дихання. Рекомендації щодо вибору, використання, догляду і обслуговування. Настанова (EN529:2005,IDT): ДСТУEN529:2006. Держспоживстандарт України, 2008 р. - 40 с.

References

Lei Z., Yang J. and Zhuang Z. (2012) Headform and N95 Filtering Facepiece Respirator Interaction: Contact Pressure Simulation and Validation. Journal of Occupational and Environmental Hygiene, Vol. 9, Iss. 1, pp. 46-58. DOI: 10.1080/15459624.2011.635130

Gutierrez A.M.J.A., Galang M.D., Rosemary R.S., Lu M.C. and Ty D.R.S. (2014) Designing an improved respirator for automotive painters. International Journal of Industrial Ergonomics, Vol. 44, Iss. 1, pp. 131-139. DOI: 10.1016/j.ergon.2013.11.004

Plebani C., Listrani S. andDi M. (2010) Luigi Filtering facepieces: effect of oily aerosol load on penetration through the filtering material. La Medicina del lavoro, Vol. 101, No. 4, pp. 293-302.

Janssen L., Bidwell J., Mullins H. and Nelson T. (2003) 221. Field Efficiency Study of Degraded Electret Filters, Part 1: Methods and Laboratory Testing Results. AIHce 2003. DOI: 10.3320/1.2757899

Groce D., Guffey S. and Viscusi D.J. (2010) Three-dimensional facial parameters and principal component scores: Association with respirator fit. Journal of the International Society for Respiratory Protection, Vol. 27, No. 1, pp. 1-15.

Zhou S., Li H., Shen S., Li S., Wang W., Zhang X. and Yang J. (2017) An intelligent FFR with a self-adjustable ventilation fan. Journal of Occupational and Environmental Hygiene, Vol. 14, Iss. 11, pp. D173-D178. DOI: 10.1080/15459624.2017.1366036

Holinko V.I., Cheberiachko Yu.I., Frundin V.Yu., Cheberiachko S.I., Radchuk D.I. and Slavinskyi D.V. (2018) Filtruvalnyi respirator [Filter respirator]. Patent UA201707973.

Derzhstandart Ukrainy (2016) Zasoby indyvidualnoho zakhystu orhaniv dykhannia. Protyaerozolni filtry. Vymohy, vyprobuvannia, markuvannia [Respiratory protection. Anti-aerosol filters. Requirements, tests, marking] DSTU EN 143:2000/A1:2006, IDT, 24 p.

Zabolotnii S.V. and Lehy Yu.H. eds (2010) Tsyfrove obroblennia syhnaliv [Digital signal processing], Cherkasy, ChDTU, 119 p.

Cheberiachko S. I. (2013) The study of the filtering respirator breathing resistance under cyclic current of air. Scientific Bulletin of National Mining University, Vol. 2, No. 12, pp. 205-212. (in Ukrainian)

JCGM 100:2008 (2008) Evaluation of measurement data - Guide to the Expression of Uncertainty in Measurement. JCGM, p. 120.

Zhuang Z., Coffey C.C., Jensen P.A., Campbell D.L., Lawrence R.B. and Myers W.R. (2003) Correlation Between Quantitative Fit Factors and Workplace Protection Factors Measured in Actual Workplace Environments at a Steel Foundry. AIHA Journal, Vol. 64, Iss. 6, pp. 730. DOI: 10.1202/475.1

Derzhstandart Ukrainy (2005) Zasoby indyvidualnoho zakhystu orhaniv dykhannia. Rekomendatsii shchodo vyboru, vykorystannia, dohliadu i obsluhovuvannia [Respiratory protection. Recommendations for selection, use, care and maintenance]. DSTU EN 529:2006 IDT.

Published

2019-09-30

How to Cite

Чеберячко, С. І., Чеберячко, Ю. І., Дерюгін, О. В. and Славінський, Д. В. (2019) “Dust Mask with a Pressure Drop Measuring Device ”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (78), pp. 43-51. doi: 10.20535/RADAP.2019.78.43-51.

Issue

Section

Designing of Radio Equipment