Вимірювальні перетворювачі імпедансу з чотиритактним детектуванням сигналу
DOI:
https://doi.org/10.20535/RADAP.2018.72.62-68Ключові слова:
імпедансна спектроскопія, сигнальні перетворювачі, Інтернет речей, SPICE моделюванняАнотація
Робота присвячена проблемам розроблення сенсорних пристроїв на основі методів імпедансної спектроскопії. У порівнянні з іншими методами фізичних досліджень пристрої імпедансної спектроскопії забезпечують простоту реалізації, високу енергоефективність, хорошу роздільну здатність та селективність вимірювань параметрів досліджуваних об’єктів. Представлені результати розроблення та модельного дослідження вимірювального перетворювача імпедансу з використанням методу чотиритактного детектуванням сигналу. На відміну від традиційного двотактного детектування, чотиритактне детектування сигналу дозволяє суттєво спростити схеми перетворювачів. Таке спрощення досягається безпосереднім інтегруванням миттєвого значення $I_{Z}(t)$ струму без використання проміжних каскадів сигнального перетворення. Проведені модельні дослідження та параметричний аналіз базуються на методі розрахунку з використанням Transient аналізу SPICE моделей, в результаті якого визначають активну $Z_{RE}$ та реактивну $Z_{IM}$ складові вимірюваного імпедансу для фактичних параметрів сигналів та елементної бази схеми перетворювача. Представлені залежності вихідних напруг вимірювального перетворювача з чотиритактним детектуванням від ширини смуги робочих частот операційних підсилювачів. Отримані результати мають важливе значення для вирішення проблем розроблення нового покоління мікроелектронних сенсорних пристроїв концепції Інтернету Речей на основі методів імпедансної спектроскопії, зокрема, в галузях матеріалознавства, біохімії, автомобілебудування, авіоніки, екології тощо.Посилання
Vermesan O. and Friess P. (2013) Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, River Publishers, 363 p.
Yoshimatsu T., Tsuda N. and Yamada J. (2016) Signal processing for distance measurement using laser voltage fluctuation due to self-coupling effect. 2016 10th International Conference on Sensing Technology (ICST). DOI: 10.1109/icsenst.2016.7796306
Holyaka R. and Kostiv N. (2011) Energy-efficient signal converter of thermocouple, temperature sensors. Informatyka, Automatyka, Pomiary, no. 4, pp. 26-28.
Hajimorad M., Alhloul S., Mustafa H., So M. and Oswal H. (2016) Application of polypyrrole-based selective electrodes in electrochemical impedance spectroscopy to determine nitrate concentration. 2016 IEEE SENSORS. DOI: 10.1109/icsens.2016.7808592
Gajasinghe R. W RL, Tigli O., Jones M. and Ince T. (2016) Label-free tumor cell detection and differentiation based on electrical impedance spectroscopy. 2016 IEEE SENSORS. DOI: 10.1109/icsens.2016.7808466
Hong B., Sun A., Pang L., Venkatesh A., Hall D. and FAINMAN Y. (2016) Integrated biosensor for simultaneous detection by surface plasmon resonance and Faradaic electrochemical impedance spectroscopy. Conference on Lasers and Electro-Optics. DOI: 10.1364/cleo_at.2016.jw2a.113
Jun-Rui Z., Nanolab I.A. and Mazza M. (2016) Low-energy biomarker detection through charge-based impedance measurements. 2016 IEEE SENSORS. DOI: 10.1109/icsens.2016.7808744
Kamat D.K. and Patil P.M. (2016) Multi-frequency and multi-segment bio-impedance measurement using tetra-polar electrode setup. 2016 2nd International Conference on Control Science and Systems Engineering (ICCSSE). DOI: 10.1109/ccsse.2016.7784380
Mankovskyy S. and Mankovska E. (2016) Symbolic model of the quadrature detector. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). DOI: 10.1109/tcset.2016.7451978
Culurciello E., Montanaro H. and Kim D. (2009) Ultralow Current Measurements With Silicon-on-Sapphire Integrator Circuits. IEEE Electron Device Letters, Vol. 30, Iss. 3, pp. 258-260. DOI: 10.1109/led.2008.2010564
Sandler Steven and Hymowitz Charles. (2006) SPICE Circuit Handbook. The McGraw Hill. - 362 p. DOI: 10.1036/0071468579
MICRO-CAP (2014) Electronic Circuit Analysis Program. Spectrum Software., 8 p.
Barylo G. I., Holyaka R. L., Prudyus I. N. and Fabirovskyy S. E. (2017) Technique of increasing the impedance measuring transducers accuracy at inharmoniousness signals. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 70, pp. 30-36. (in Ukrainian)
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у нашому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована нашим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у нашому журналі.
3. Політика журналу дозволяє і заохочує розміщення рукопису роботи авторами в мережі Інтернет (наприклад, на arXiv.org або на особистих веб-сайтах). Причому рукописи статей можуть бути розміщенні у відкритих архівах як до подання рукопису до редакції, так і під час його редакційного опрацювання. Це сприяє виникненню продуктивної наукової дискусії, позитивно позначається на оперативності ознайомлення наукової спільноти з результатами Ваших досліджень і як наслідок на динаміці цитування вже опублікованої у журналі роботи. Детальніше про це: The Effect of Open Access.