Аналiз змiн хi-квадрат вiдстанi мiж розподiлами яскравостi пiкселiв при фiльтрацiї стеганограм, сформованих згiдно методу UNIWARD
Ключові слова:
стегоаналiз, адаптивнi стеганографiчнi методи, метод UNIWARD, хi-квадрат вiдстаньАнотація
Протидія несанкціонованій передачі конфіденційних даних є актуальною та важливою задачею сьогодні. Особлива увага приділяється ранньому виявленню прихованої (стеганографічної) передачі інформації при обміні повідомленнями в інформаційно-комунікаційних системах. Приховання повідомлень (стегоданих) проводиться шляхом внесення змін до файлів-контейнерів, зокрема цифрових зображень. Забезпечення високої імовірності виявлення сформованих стеганограм потребує застосування спеціалізованих стегодетекторів, заснованих на використанні апріорних даних щодо використаного стеганографічного алгоритму. Це призводить до зниження ефективності системи виявлення у випадку атаки нульового дня (zero-day attack) – використання зловмисниками попередньо невідомих методів прихованням повідомлень. Внаслідок цього актуальною задачею є розробка універсальних (сліпих) стегодетекторів, здатних з високою точністю виявляти стеганограми в умовах обмеженості або навіть відсутності апріорних даних щодо використаного стеганографічного алгоритму. Вирішення даної задачі потребує виявлення та аналізу слабких змін параметрів зображення-контейнеру, обумовлених вбудовуванням стегоданих. Для підсилення даних змін в роботі запропоновано проводити попередню обробку (фільтрацію) досліджуваних зображень з використанням медіанного та вінеровського фільтрів. Розглянуто випадок формування стеганограм з використанням новітніх адаптивних методів UNIWARD. Показано, що попередня фільтрація стеганограм дозволяє виявити слабкі відмінності в розподілі значень яскравості пікселів зображень-контейнерів та стеганограм, навіть у випадку малого заповнення контейнерів стегоданими (менше 10\%). Виявлено, що характер змін хі-квадрат відстані між розподілами значень яскравості пікселів зображень-контейнерів та стеганограм суттєво залежить від області вбудовування стегоданих до контейнеру. Врахування даних змін при проведенні стегоаналізу цифрових зображень дає можливість визначати область приховання повідомлень та, відповідно, обирати ефективні методи деструкції стеганограм.
Посилання
Fridrich J. (2009) Steganography in Digital Media. DOI: 10.1017/cbo9781139192903
Kodovský J. and Fridrich J. (2012) Steganalysis of JPEG images using rich models. Media Watermarking, Security, and Forensics 2012. DOI: 10.1117/12.907495
Fridrich J. and Kodovsky J. (2012) Rich Models for Steganalysis of Digital Images. IEEE Transactions on Information Forensics and Security, Vol. 7, Iss. 3, pp. 868-882. DOI: 10.1109/tifs.2012.2190402
Holub V., Fridrich J. and Denemark T. (2014) Universal distortion function for steganography in an arbitrary domain. EURASIP Journal on Information Security, Vol. 2014, Iss. 1. DOI: 10.1186/1687-417x-2014-1
Davidson J., Bergman C. and Bartlett E. (2005) An artificial neural network for wavelet steganalysis. Mathematical Methods in Pattern and Image Analysis. DOI: 10.1117/12.615280
Progonov D. (2018) Information-Theoretic Estimations of Cover Distortion by Adaptive Message Embedding. Information Theories and Applications, Vol. 25, No 1, pp. 47-62.
Filler T. and Fridrich J. (2010) Gibbs Construction in Steganography. IEEE Transactions on Information Forensics and Security, Vol. 5, Iss. 4, pp. 705-720. DOI: 10.1109/tifs.2010.2077629
Bishop C. (2006) Pattern Recognition and Machine Learning, Springer-Verlag, 738 p.
Kodovsky J., Fridrich J. and Holub V. (2012) Ensemble Classifiers for Steganalysis of Digital Media. IEEE Transactions on Information Forensics and Security, Vol. 7, Iss. 2, pp. 432-444. DOI: 10.1109/tifs.2011.2175919
Huiskes M.J. and Lew M.S. (2008) The MIR flickr retrieval evaluation. Proceeding of the 1st ACM international conference on Multimedia information retrieval - MIR '08. DOI: 10.1145/1460096.1460104
Avcibas I., Memon N. and Sankur B. (2003) Steganalysis using image quality metrics. IEEE Transactions on Image Processing, Vol. 12, Iss. 2, pp. 221-229. DOI: 10.1109/tip.2002.807363
Gonzalez R.C and Woods R. E. (2007) Digital Image Processing, Prentice Hall, 976 p.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у нашому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована нашим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у нашому журналі.
3. Політика журналу дозволяє і заохочує розміщення рукопису роботи авторами в мережі Інтернет (наприклад, на arXiv.org або на особистих веб-сайтах). Причому рукописи статей можуть бути розміщенні у відкритих архівах як до подання рукопису до редакції, так і під час його редакційного опрацювання. Це сприяє виникненню продуктивної наукової дискусії, позитивно позначається на оперативності ознайомлення наукової спільноти з результатами Ваших досліджень і як наслідок на динаміці цитування вже опублікованої у журналі роботи. Детальніше про це: The Effect of Open Access.