Розробка наноструктурованих плазмонних пiдкладок для використання в якості датчикiв ГКР


Анотація

Плазмоннi наноструктури сильно локалiзують електричне поле на їх поверхнях за допомогою колективних коливань електронiв провiдностi при стимуляцiї падаючим свiтлом на певнiй довжинi хвилi. Молекули, адсорбованi на таких поверхнях, вiдчувають сильно посилене електричне поле через локалiзований поверхневий плазмонний резонанс (ЛППР), який пiдсилює сигнал комбiнацiйного розсiювання вiд цих молекул. Це явище називають поверхневим гiгантським комбiнацiйним розсiюванням (ГКР). Подальшi полiпшення в iнтенсивностi комбiнацiйного розсiювання були досягнутi шляхом проектування плазмонних наноструктур з контрольованим розмiром, формою, складом та розташуванням. У цiй оглядовiй статтi основна увага придiляється теорiї та аналiзу впливу захисного покриття на оксиднi матерiали на iзольованi наноструктури плазмонних металiв. Починаючи з короткого опису основних принципiв, що лежать в основi ЛППР i ГКР, ми порiвнюємо два плазмонних метала, два дiелектричних матерiала i вплив змiни окремих параметрiв наноструктури на вихiдний посилений сигнал комбiнацiйного розсiювання.

Бібліографічний опис

 
ДСТУ ГОСТ 7.1:2006 У транслітерації (формат Harvard)
 
Bandeliuk, O. V. Engineering of nanostructured plasmonic substrates for use as SERS sensors / Bandeliuk, O. V., Kolobrodov, V. H. // Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv. – 2017. – № 70. – с. 62-71. Bandeliuk, O. V., Kolobrodov, V. H. (2017) Engineering of nanostructured plasmonic substrates for use as SERS sensors. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 70, pp. 62-71.
 

Повний текст:


Посилання


Guillot N. and Lamy M. (2012) The electrolatexcompanionmagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures, J of Quantitative Spectroscopy and Radiative Transfer, Vol. 113, Is. 18, pp. 2321-2333.

Yoon J., Dong J., Sung-Gyu P., Shin-Hyun K. and Dong-Ho K. (2016) Nanostructured plasmonic substrates for use as SERS sensors, Nano Convergence, Vol. 3, No.1, 18p.

Cushing K., Li J., Bright J., Yost B., Zheng P., Bristow A. and Nianqiang W. (2015) Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal@TiO2 Core-Shell Nanoparticles, J. Phys. Chem. C, Vol. 119 (28), pp 16239–16244.

Katherine Willets A. and Richard P. (2007) Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annu. Rev. Phys. Chem., Vol. 58, pp. 267-297.

Hakonen A., Svedendahl M., Ogier R., Yang Z., Lodewijks K., Verre R., Shegai T., Anderssonb P. and Kall M. (2015) Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography, Nanoscale, Vol. 7, No. 21, pp. 9405-9410. DOI: 10.1039/c5nr01654a

Hyunhyub K., Chang S. and Vladimir V. (2009) Porous Substrates for Label-Free Molecular Level Detection of Nonresonant Organic Molecules. ACS Nano, Vol. 3, pp. 181-188. DOI: 10.1021/nn800569f

Etchegoin P., Le Ru E., and Meyer M. (2006) An analytic model for the optical properties of gold, J. Chem. Phys., Vol. 125, pp. 164705. DOI: 10.1063/1.2360270

Yu-LuenDeng, Yi-JeJuang (2014) Black silicon SERS substrate: Effect of surface morphology on SERS detection and application of single algal cell analysis, Biosensors and Bioelectronics, Vol. 53, pp. 37-42. DOI: 10.1016/j.bios.2013.09.032

Chen J., Yinyong Li, Huang K., Wang P., He L., Carter K., and Nugen S. (2015) Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications, ACS Appl. Mater. Interfaces, Vol. 7, pp. 22106-22113. DOI: 10.1021/acsami.5b07879

Zhi Wei Seh, Shuhua Liu, Michelle Low, Shuang-Yuan Zhang, Zhaolin Liu, Adnen Mlayah, and Ming-Yong Han (2012) Janus Au-TiO 2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Effi cient Visible-Light Hydrogen Generation, Advanced Materials, Vol. 24, No 17, pp. 2310-2314. DOI: 10.1002/adma.201104241

Zhibing Zhan, Rui Xu, Yan Mi, Huaping Zhao, and Yong Lei (2015) Highly Controllable Surface Plasmon Resonance Property by Heights of Ordered Nanoparticle Arrays Fabricated via a Nonlithographic Route, ACS Nano, Vol. 9, No. 4, pp. 4583-4590. DOI: 10.1002/adma.201104241

Quyen T., Chang C., Su W., Yih-Huei Uen, Pan C., Liu J., Rick J., Lin K. and Hwang B. (2014) Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection, J. Mater. Chem. B, Vol. 2, pp. 629. DOI: 10.1039/c3tb21278e

Kozanoglu D., Apaydin D., Cirpan A., Esenturk E. (2013) Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres, Organic Electronics, Vol. 14, pp. 1720-1727. DOI: http://dx.doi.org/10.1016/j.orgel.2013.04.008

Niu W., Chua Y., Zhang W., Huang H. and Lu X. (2015) Highly Symmetric Gold Nanostars: Crystallographic Control and Surface-Enhanced Raman Scattering Property, J. Am. Chem. Soc., Vol. 137 (33), pp. 10460-10463. DOI: 10.1021/jacs.5b05321

Bouvree A., D'Orlando A., Makiabadi T., Martin S., Louarn G., Mevellec J. and Humbert B. (2013) Nanostructured and nanopatterned gold surfaces: application to the surface-enhanced Raman spectroscopy, Gold Bull, Vol. 46, pp. 283-290. DOI: http://dx.doi.org/10.1007/s13404-013-0127-4

Alyssa J., Bjorn M. Reinhard and Luca Dal Negro (2012) Concentric Necklace Nanolenses for Optical Near-Field Focusing and Enhancement, ACS Nano, Vol. 6 (5), pp. 4341-4348. DOI: 10.1021/nn301000u

Mangelson B., Jones M., Park D., Shade C., Schatz G. and Mirkin C. (2014) Synthesis and Characterization of a Plasmonic−Semiconductor Composite Containing Rationally Designed, Optically Tunable Gold Nanorod Dimers and Anatase TiO_2, ACS Chem. Mater., DOI: http://dx.doi.org/10.1021/cm5014625

Mousavi S., Berini P. and McNamara D. (2012) Periodic plasmonic nanoantennas in a piecewise homogeneous background, OSA Optics Express, Vol. 20 (16), pp. 18044-18065. DOI: 10.1364/oe.20.018044

Kim H., Lee S., Upadhye A., Insoo Ro, Tejedor-Tejedor I., Anderson M., Kim W. and Huber G. (2014) Plasmon-Enhanced Photoelectrochemical Water Splitting with Size-Controllable Au Nanodot Arrays, ACS Nano. DOI: http://dx.doi.org/10.1021/nn504484u

Ruoping L., Guanghong Y., Jingliang Y., Junhe H., Junhui L. and Mingju H. (2016) Determination of melamine in milk using surface plasma effect of aggregated Au@SiO2 nanoparticles by SERS technique, Food Control, Vol. 68, pp. 14-19. DOI: http://dx.doi.org/10.1016/j.foodcont.2016.03.009

Kuo H. and Chang C. (2014) Analysis of Core-Shell-Isolated Nanoparticle Configurations Used in the Surface-Enhanced Raman Scattering Technique, J. IEEE Sensors, Vol. 14, No 10, pp. 3708-3714. DOI: 10.1109/jsen.2014.2331459

Lingwei M., Huang Y., Mengjing H., Xie Z. and Zhang Z. (2015) Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates, Sci. Rep., Vol. 5, pp. 15442. DOI: http://dx.doi.org/10.1038/srep15442

Scherbak S., Kapralov N., Reduto I., Chervinskii S., Svirko O. and Lipovskii A. (2016) Tuning Plasmonic Properties of Truncated Gold Nanospheres by Coating, Springer Science+Business Media New York. DOI: 10.1007/s11468-016-0461-5

Chen H., Liu G., Wang L. (2105) Switched photocurrent direction in Au/TiO2 bilayer thin films, Sci. Rep., Vol. 5, No. 1, pp. 10852. DOI: 10.1038/srep10852

Zhan Z., An J., Zhang H., Hansen R. and Zheng L. (2014) Three-Dimensional Plasmonic Photoanodes Based on Au-Embedded TiO2 Structures for Enhanced Visible-Light Water Splitting, ACS Appl. Mater. Interfaces, Vol. 6, 1139-1144. DOI: 10.1021/am404738a

Borges J., Buljan M., Sancho-Parramon J., Bogdanovic-Radovic I., Siketic Z., Scherer T., Kubel C., Bernstorff S., Cavaleiro A., Vaz F., RoloA. (2014) Evolution of the surface plasmon resonance of Au-TiO2 nanocomposite thin films with annealing temperature, J Nanopart Res, Vol. 16, 2790. DOI: 10.1007/s11051-014-2790-7

Chen S., Yang Z., Meng L., Li J., Williams C., and Tian Z. (2015) Electromagnetic Enhancement in Shell-Isolated Nanoparticle Enhanced Raman Scattering from Gold Flat Surfaces, J. Phys. Chem. C. DOI: 10.1021/acs.jpcc.5b01254

Cushing S., Li J., Meng F., Senty T., Suri S., Zhi M., Li M., Bristow A., and Wu N. (2012) Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor, J. Am. Chem. Soc., Vol. 134, 15033-15041. DOI: 10.1021/ja305603t

Li J., Cushing S., Bright J., Meng F., Senty T., Zheng P., Bristow A., and Wu N. (2013) Ag@Cu_2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts, ACS Catal., Vol. 3, 47-51. DOI: 10.1021/cs300672f






##submission.license.cc.by4.footer##