Ближньопольовий відкритий коаксіальний сенсор. Оцінка просторової роздільної здатності вимірювальної апертури


Анотація

Мікрохвильові сенсори знаходять все більш широке використання в різних галузях. Сенсори стають все більш складними, методи їх опису стають все більш прецизійними. У роботі наведена спрощена модель опису ближнього поля коаксіального сенсора. Надані обгрунтування спрощення аналітичного рішення, розглянуті компоненти поля в робочій області і проаналізовано розподіл поля в робочій області. Показані результати порівняння розподілів компонент електромагнітного поля поблизу апертури, отримані на підставі суворої і спрощеної моделей. Проникнення поля у зразок у першому наближенні відповідає радіальному розподілу. Просторова роздільна здатність сенсора, як по радіусу, так і по глибині зразка визначається діаметром центрального провідника або розміром щілини. Варіюючи форму апертури можна змінювати характеристики сенсора, оптимально підбираючи їх під апріорно відомі властивості зразків.

Бібліографічний опис

 
ДСТУ ГОСТ 7.1:2006 У транслітерації (формат Harvard)
 
Лю Чан Ближнеполевой открытый коаксиальный сенсор. Оценка пространственной разрешающей способности измерительной апертуры / Чан Лю, О.Б. Зайченко, А.Ю. Панченко, Н.И. Слипченко // Вестник НТУУ «КПИ». Серия Радиотехника. Радиоаппаратостроение. – 2017. – № 71. – с. 11-16. Chang, Liu, Zaichenko, O. B., Panchenko, A. Yu., Slipchenko, N. I. (2017) Near-field open coaxial sensor. Measurement aperture spatial resolution ability evaluation. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 71, pp. 11-16. (in Russian)
 

Повний текст:


Посилання


Перечень ссылок

McLaughlin B. L. Miniature open-ended coaxial probes for dielectric spectroscopy applications / B. L.McLaughlin, P. A. Robertson // J. Phys. D: Appl. Phys. - 2007. - No.40. - pp. 45–53.

Nozokido T. Scanning Near-Field Millimeter-Wave Microscopy Using a Metal Slit as a Scanning Probe / T. Nozokido, J. Bae, K. Mizuno // IEEE Transaction on Microwave Theory and Technique. - 2001. - vol.49, No.3. - pp. 491-499.

Poumaropoulos C. L. A Study on the Coaxial Aperture Electromagnetic Sensor and Its Application in Material Characterization / C. L. Poumaropoulos, D. Misra D. / IEEE Transaction on instrumentation and measurement. - 1994. - vol.43, No.2. - pp. 111-114.

Blackham D. V. An Improved Technique for Permittivity Measurements Using a Coaxial Probe / D. V. Blackham, R. D. Pollard // IEEE Transaction on Instrumentation and Measurement, 1997. - vol.46, No.5. - pp. 1093-1099.

Gregory A. P. Dielectric metrology with coaxial sensors/ A. P.Gregory, R. N. Clarke // Meas. Sci. Technol. - 2007. - No.18. - pp. 1372–1386.

Hyde M. W. Nondestructive Determination of the Permittivity Tensor of a Uniaxial Material Using a Two-Port Clamped Coaxial Probe /M. W. Hyde IV, M. J. Havrilla, A. E. Bogle // IEEE Trans. Microwave Theory and Technique. - 2016. - vol.64, No.1. - pp. 239–246.

Hosseini M. H. H. Wideband Nondestructive Measurement of Complex Permittivity and Permeability Using Coupled Coaxial Probes / M. H. Hosseini, H. Heidar, M. H. Shams //IEEE Transactions on Instrumentation and Measurement. - 2017. - Т. 66. - №. 1. - С. 148-157.

Hyde M. W.A broadband, nondestructive microwave sensor for characterizing magnetic sheet materials / M. W. Hyde, M. J. Havrilla // IEEE Sensors J. - 2016. - vol. 16, No. 12 - pp. 4740–4748.

M. Kempin M. Modified waveguide flange for evaluation of stratified composites /M. Kempin, M. Ghasr, J. Case, R. Zoughi // IEEE Trans. Instrum. Meas. - 2014. - vol. 63, No. 6. - pp. 1524–1534.

Ch. Liu An integral equation for the field distribution within the aperture plane of the coaxial sensor/ Ch. Liu, A.Yu.Panchenko, M. I. Slipchenko //Telecommunications and Radio Engineering. - 2016. - №75 (7). - pp. 587-594.

Панченко Б.А. Тензорные функции Грина уравнений Максвелла для цилиндрических областей / Б.А. Панченко // Радиотехника: Всеукраинский межведомственный научно-технический сборник. - 1970. - Вып. 15. - С. 82-91.

Tai C.T. Dyadic Green's functions for a coaxial line / C.T. Tai //IEEE Trans. of Antennas and Propagation. - 1983. - Vol. 48, No. 2 - pp. 355–358.

Ch. Liu. Analysis of the properties of the integral equation for the field distribution across the aperture of a coaxial sensor / Ch. Liu, A.Yu. Panchenko, M. I. Slipchenko. //Telecommunications and Radio Engineering. - 2016. - №75 (11)- pp. 969-977.

Panchenko A.Yu. Modeling a small aperture resonator type microwave meter of substance parameters /A.Yu.Panchenko // Telecommunications and Radio Engineering. - 1998. - №52 (8). - pp. 118-121.

Гордиенко Ю.Е. Приближение заданного поля в задачах определения характеристик резонаторных СВЧ - датчиков апертурного типа /Ю.Е. Гордиенко, А.Ю.Панченко, Р.С.Фар // Радиотехника: Всеукраинский межведомственный научно-технический сборник. - 1998. - Вып. 107. - С. 93-103.

Wen Mingming. Evaluation of influence of microwave radiation sensor in the form of an open end of the coaxial line on its metrological characteristics / Wen Mingming, Ch. Liu, A.Yu. Panchenko, N.I. Slipchenko // Telecommunications and Radio Engineering. - 2015. - №74 (15). - pp. 1355-1366.

Kaatze U. Techniques for measuring the microwave dielectric properties of materials/ U.Kaatze // Metrologia, 2012, Vol.47, No.2. - pp. S91–S113.

Kaatze U. Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging / U.Kaatze // Meas. Sci. Technol. 2013. - p. 1-31.

Szypłowska A., Wilczek A., Kafarski M., Skierucha W. (2016) Soil Complex Dielectric Permittivity Spectra Determination Using Electrical Signal Reflections in Probes of Various Lengths /A.Szypłowska, A.Wilczek, M. Kafarski, W.Skierucha // Vadose Zone J., 2016. - pp. 1-12.

Hofmann M. Six-Port-Based Microwave Spectroscopy of Dielectric Materials for Non-Invasive ISM Applications / M. Hofmann // Erlqangen, FAU University Press. - 2015. - 195 p.

Muller W. Optimising a modified free-space permittivity characterisation method for civil engineering applications/W.Muller, A. Scheuermann // J. Geophys. Eng. - 2016. - 13. - pp. S9-S17.

Xue Bai. Electrical impedance analysis of pork tissues during storage /Xue Bai, Jumin Hou, Lu Wang, Minghui Wang, Xia Wang, Chunhui Wu, Libo Yu, Jie Yang, Yue Leng, Yonghai Sun // Food Measure,2017. - pp. 1-9.

Flores M. Microwire composite electromagnetic parameters extraction by waveguide measurements at X-band / M.Flores ,A.Calo, A.Gorriti, D.Cortina, G.Rubio, J.Grajal J., J.Hernando // Journal of Electromagnetic Waves and Applications. - 2014. - Vol. 28, No. 2. - pp. 202–213.

Panchenko A.Yu. On the development of a practical technique of theoretical calibration of resonant sensors for near-field microwave diagnostics / A.Yu.Panchenko, N.I.Slipchenko, A.N.Borodkina // Telecommunication and Radio Engineering. - 2014. - №73(15). - pp. 1397-1407.

Bore T. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect / T.Bore, N.Wagner, S.D. Lesoille, F.Taillade G. Six, F.Daout, D.Placko // Sensors. - 2016. - 16, 554. - pp. 1-14.

Suzuki M. Hydration Study of Proteins in Solution by Microwave Dielectric Analysis / M. Suzuki, J. Shigematsu, T. Kodama // J. Phys. Chem. - 1996. - 100. - pp. 7279-7282.

Cenanovic A. Measurement setup for non-destructive complex permittivity determination of solid materials using two coupled coaxial probes / A. Cenanovic, M. Schramm, L.Schmidt // IEEE MTT-S Int. Microw. Symp. Dig. - 2011. - pp. 1–4.

Hyde M. W. Nondestructive electromagnetic material characterization using a dual waveguide probe: A full wave solution / M. W. Hyde et al.// Radio Science. - 2009. - Т. 44. - №. 3.

Alanen E. Variational Formulation of Open-Ended Coaxial Line in Contact with Layered Biological Medium / E.Alanen E., T. Lahtinen,J. Nuutinen // IEEE Transaction on biomedical engineering. - 1998. - vol.45, No.10. - pp. 1241-1247.

Huang R. Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method / R. Huang, D. Zhang //IEEE Trans. Instrum. Meas. - 2008. - vol. 57, No. 5. - pp. 931–939.

Думин А.Н. Дифракция нестационарной ТЕМ-волны на открытом конце коаксиального волновода /А.Н. Думин, В.А.Катрич ,Н.Н. Колчигин, С.Н.Пивненко, О.А. Третьяков // Радиофизика и радиоастрономи. - 2000. - Т. 5, №1. - С. 55-67.

Maftooli H. Output signal prediction of an open-ended coaxial probe when scanning arbitrary-shape surface cracks in metals / H. Maftooli, H. R. Karami, S. H. H. Sadeghi, R. Moini // IEEE Trans. Instrum. Meas. - 2012. - Vol. 61, No. 9. - pp. 2384–2391.

References

McLaughlin B. L., Robertson P. A. (2007) Miniature open-ended coaxial probes for dielectric spectroscopy applications, J. Phys. D: Appl. Phys., Vol. 40, pp. 45–53 DOI:10.1088/0022-3727/40/1/S08.

Tatsuo Nozokido, Jongsuck Bae, Koji Mizuno (2001) Scanning Near-Field Millimeter-Wave Microscopy Using a Metal Slit as a Scanning Probe. IEEE Transaction on Microwave Theory and Technique, Vol.49, No.3, pp. 491-499. DOI: 10.1109/22.910553

Poumaropoulos C. L. and Misra D. (1994) A Study on the Coaxial Aperture Electromagnetic Sensor and Its Application in Material Characterization, IEEE Transaction on instrumentation and measurement, Vol.43, No.2. pp. 111-114. DOI: 10.1109/19.293405

Blackham D. V. and Pollard R. D. (1997) An Improved Technique for Permittivity Measurements Using a Coaxial Probe IEEE Transaction on Instrumentation and Measurement, Vol.46, No.5, pp. 1093-1099. DOI: 10.1109/19.676718.

Gregory A. P. and Clarke R. N. (2017) Dielectric metrology with coaxial sensors, Meas. Sci. Technol., Vol. 18, pp. 1372–1386. DOI:10.1088/0957-0233/18/5/026.

Hyde M. W. and Havrilla M. J. (2016) Nondestructive Determination of the Permittivity Tensor of a Uniaxial Material Using a Two-Port Clamped Coaxial Probe, IEEE Trans. Microwave Theory and Technique, Vol.64, No.1, pp. 239–246. DOI: 10.1109/TMTT.2015.2502242

Hosseini M. H. and Heidar H. (2017) Wideband Nondestructive Measurement of Complex Permittivity and Permeability Using Coupled Coaxial Probes, IEEE Transactions on Instrumentation and Measurement, Vol. 66, No.1, pp. 148–157. DOI: 10.1109/TIM.2016.2619958

Hyde M. W. and Havrilla M. J. (2016) Broadband, nondestructive microwave sensor for characterizing magnetic sheet materials IEEE Sensors J., Vol. 16, No. 12, pp. 4740–4748. DOI: 10.1109/JSEN.2016.2548560

Kempin M. and Ghasr M. (2014) Modified waveguide flange for evaluation of stratified composites, IEEE Trans. Instrum. Meas., Vol. 63, No. 6, pp. 1524–1534. DOI: 10.1109/TIM.2013.2291952

Lu Ch. and Panchenko A. Yu. (2015) An integral equation for the field distribution within the aperture plane of the coaxial sensor Telecommunications and Radio Engineering, No. 75(7), pp. 587–594. DOI: 10.1615/TelecomRadEng.v75.i7.20

Panchenko B. A. (1970) Tenzornyie funktsii Grina uravneniy Maksvella dlya tsilindricheskih oblastey [Tensor Green's functions of Maxwell's equations for cylindrical regions]. Radiotehnika: Vseukrainskiy mezhvedomstvennyiy nauchno-tehnicheskiy sbornik, Vol. 15, pp. 82-91.

Tai C. T. (1983) Dyadic Green's functions for a coaxial line, IEEE Trans. of Antennas and Propagation, Vol. 48, No. 2, pp. 355–358. DOI: 10.1109/TAP.1983.1143029

Liu Ch., Panchenko A.Yu. and Slipchenko M. I. (2016) Analysis of the properties of the integral equation for the field distribution across the aperture of a coaxial sensor, Telecommunications and Radio Engineering, No.75 (11), pp. 969-977. DOI: 10.1615/TelecomRadEng.v75.i11

Panchenko A. Yu. (1998) Modeling a small aperture resonator type microwave meter of substance parameters, Telecommunications and Radio Engineering, No.52 (8), pp. 118–121. DOI: 10.1615/TelecomRadEng.v52.i8

Gordienko Yu. E., Panchenko A. Yu. and Far R. S. (1998) Priblijenie zadannogo polya v zadachah opredeleniya harakteristik rezonatornyih SVCH- datchikov aperturnogo tipa [Approximation of a preset field in the problems of determining the characteristics of the resonator of the microwave sensors aperture type], Radiotehnika: Vseukrainskiy mezhvedomstvennyiy nauchno-tehnicheskiy sbornik, Vol. 107, pp. 93–103.

Wen Mingming and Liu Ch. (2015) Evaluation of influence of microwave radiation sensor in the form of an open end of the coaxial line on its metrological characteristics Telecommunications and Radio Engineering, No.74(15), pp. 1355–1366. DOI: 10.1615/TelecomRadEng.v74.i15.40

Kaatze U. (2010) Techniques for measuring the microwave dielectric properties of materials, Metrologia, Vol. 47, No. 2, pp. S91–S113. DOI: 10.1088/0026-1394/47/2/S10.

Kaatze U. (2013) Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging, Meas. Sci. Technol., Vol. 24, 012005. DOI: 10.1088/0957-0233/24/1/012005

Szypłowska A., Wilczek A., Kafarski M. and Skierucha W. (2016) Soil Complex Dielectric Permittivity Spectra Determination Using Electrical Signal Reflections in Probes of Various Lengths, Vadose Zone Journal, pp. 1-12. DOI: 10.2136/vzj2015.10.0135.

Hofmann M. (2015) Six-Port-Based Microwave Spectroscopy of Dielectric Materials for Non-Invasive ISM Applications, Erlqangen, FAU University Press, 2015, 195,p.

Muller W. and Scheuermann A. (2016) Optimising a modified free-space permittivity characterisation method for civil engineering applications J. Geophys. Eng., Vol. 13, pp. S9-S17. DOI: 10.1088/1742-2132/13/2/S9.

Xue Bai, Jumin Hou, Lu Wang, Minghui Wang, Xia Wang, Chunhui Wu, Libo Yu, Jie Yang, Yue Leng and Yonghai Sun (2017) Electrical impedance analysis of pork tissues during storage, Food Measure, pp. 1-9, DOI: 10.1007/s11694-017-9627-x.

Flores M., Calo A., Gorriti A., Cortina D., Rubio G., Grajal J. and Hernando A. (2014) Microwire composite electromagnetic parameters extraction by waveguide measurements at X-band, Journal of Electromagnetic Waves and Applications, Vol. 28, No. 2, pp. 202–213. DOI: 10.1080/09205071.2013.862186.

Panchenko A. Yu., Slipchenko N. I. and Borodkina A. N. (2014) On the development of a practical technique of theoretical calibration of resonant sensors for near-field microwave diagnostics Telecommunication and Radio Engineering, No 73 (15), pp. 1397-1407. DOI: 10.1615/TelecomRadEng.v73.i15.

Bore T., Wagner N., Lesoille S.D., Taillade F., Six G., Daout F. and Placko D. (2016) Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect, Sensors, 16, 554, pp. 1-14. DOI: 10.3390/s16040554.

Suzuki M., Shigematsu J. and Kodama T. (1996) Hydration Study of Proteins in Solution by Microwave Dielectric Analysis, J. Phys. Chem., 100 (17), pp. 7279-7282. DOI: 10.1021/jp953331k

Cenanovic A. and Schramm M. (2011) Measurement setup for non-destructive complex permittivity determination of solid materials using two coupled coaxial probes, IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–4. DOI: 10.1109/MWSYM.2011.5972838

Hyde M. W. and Stewart (2009) Nondestructive electromagnetic material characterization using a dual waveguide probe: A full wave solution, Radio Sci., Vol. 44, RS3013, pp. 1-13. DOI: 10.1029/2008RS003937

Alanen E., Lahtinen T. and Nuutinen J. (1998) Variational Formulation of Open-Ended Coaxial Line in Contact with Layered Biological Medium, IEEE Transaction on biomedical engineering, Vol. 45, No. 10, pp. 1241-1247. DOI: 10.1109/10.720202

Huang R. and Zhang D. (2008) Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method, IEEE Transactions on Instrumentation and Measurement, Vol. 57, Iss. 5, pp. 931-939. DOI: 10.1109/TIM.2007.913830

Dumin A. N., Katrich V. A., Kolchigin N. N., Pivnenko S. N. and Tretyakov O. A. (2000) Difraktsiya nestatsionarnoy TEM-volnyi na otkryitom kontse koaksialnogo volnovoda [Nonstationary diffraction of THE wave at the open end of the coaxial waveguide], Radiofizika i radioastronomiya, Vol. 5, No.1, pp. 55–67.

Maftooli H. (2012) Output signal prediction of an open-ended coaxial probe when scanning arbitrary-shape surface cracks in metals, IEEE Trans. Instrum. Meas., Vol. 61, No. 9, pp. 2384–2391. DOI: 10.1109/TIM.2012.2199193




##submission.copyrightStatement##

##submission.license.cc.by4.footer##