Simulation modeling of the digital quadrature receiver of the nuclear quadrupole resonance signals

Authors

Keywords:

quadrature detection, receiving path, software defined radio, SDR, radio spectrophotometer, digital filters, nuclear quadrupole resonance, NQR, simulation model

Abstract

Introduction. The study of physical properties of substances using pulsed electromagnetic radiation has become widespread in optical and radio wave spectroscopy. Pulsed Fourier spectroscopy of nuclear quadruple resonance (NQR) is based on powerful radio frequency excitation pulses and the use of highly sensitive equipment. In response to the short broadband δ-pulse, this method ensures the excitation of all resonance frequencies of the NQR spectrum. The method of detecting free induction decay signals (FID) requires a thorough analysis, since its implementation governs the accuracy of visualization of complex resonance spectra, especially when it comes to multi-pulse experiments. Recently, in the developed countries of the world, much work is in progress on the development of radiotechnical systems that are referred to collectively as Software Defined Radio (SDR).
The choice of NQR detecting methods. It is known that in the pulsed NQR, the FID signals are detected by transferring the resonance spectrum to the low frequency (LF) range by subtracting the reference frequency, which is close to the frequency of the resonating nucleus. The features of the Fourier transform create additional problems when selecting the reference frequency for the synchronous detector. Another option is to apply a quadrature detection of FID which allows an increase in the signal-to-noise ratio by a factor of square root. Apart from increasing sensitivity, the use of quadrature detection imposes some restrictions. In reality there are small residual signals - quadrature reflections in the spectra.
Simulation modeling of the receive path of radiospectrometer developed on the principle of direct digitization of a signal. The structure and MATLAB Simulink model of a digital quadrature receiver of nuclear quadruple resonance signals were developed. The synthesis of compensating filters and computer simulation of signal transformations in the receive path of radiospectrometer were performed. It was established that the application of the principle of direct digitization of the free induction decay signal made it possible to significantly reduce the length of the analog portion of the receiver, and, consequently, reduce the noise of the useful signal and the level of out-of-band higher order spectral components. In particular, with a sampling frequency of 17 MHz and a cutoff frequency of the compensating LPF of 1 MHz, the level of side and out-of-band emissions in the effective bandwidth of the SDR is not more than -100 dB.
Algorithm of phase cycles CYCLOPS. An algorithm based on the principle of four-phase cycles CYCLOPS is integrated into the SDR receiver simulation model, which ensures the reduction of quadrature reflections to 1 %. The concept of proposed model realization on the basis of DSP libraries System Toolbox and FDATool makes possible its efficient implementation on the basis of field-programmable gate arrays. In this case, the FPGA of Intel (Altera) or Xilinx are effective, since CAD systems of their configuration structures are closely integrated with MATLAB.

Author Biographies

A. P. Samila, Yuriy Fedkovych Chernivtsi National University

Samila A. P.

O. V. Hres, Yuriy Fedkovych Chernivtsi National University

Hres O. V.

V. B. Rusyn, Yuriy Fedkovych Chernivtsi National University

Rusyn V. B., PhD, Department of Radio Engineering and Information Security

H. M. Rozorinov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Rozorinov H. M.

O. H. Arkhiiereieva, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Arkhiiereieva O. H.

References

Перелік посилань

Itozaki Hideo. Nuclear quadrupole resonance for explosive detection / Hideo Itozaki and Go Ota // International journal on smart sensing and intelligent systems. - 2007. - Vol. 1, № 3. - P. 705–715.

Hemnani Preeti. 14N NQR spectrometer for explosive detection: A Review / Preeti Hemnani, Gopal Joshi, A.K. Rajarajan, S.V.G. Ravindranath // IEEE International Conference on Automatic Control and Dynamic Optimization Techniques, Hinjawadi, Pune, India, Sep. - 2016. - pp. 1120–1125.

Butt Naveed R. An Overview of NQR Signal Detection Algorithms / Naveed R. Butt, Erik Gudmundson and Andreas Jakobsson. - Lund: Centre for Mathematical Sciences, Lund University, 2014. - 16p.

Chytil J. Detector for Nuclear Quadrupole Resonance Spectroscopy / J. Chytil and R. Kubasek // Progress In Electromagnetics Research Symposium Proceedings, Guangzhou, China, Aug. - 2014. - pp. 1907–1910.

Begus Samo. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device / Samo Begus, Vojko Jazbinsek, Janez Pirnat, Zvonko Trontelj // Journal of Magnetic Resonance. - 2014. - Vol. 247. - pp. 22-30.

Xinwang Z. A low-power compact nuclear quadrupole resonance (NQR) based explosive detection system : Diss. Doctor of Philosophy : El. Eng. / Xinwang Zhang. - Lincoln-Nebraska, 2014. - 205 p.

Apih T. Magnetic Resonance Detection of Explosives and Illicit Materials : NATO Science for Peace and Security Series B: Physics and Biophysics / T. Apih, B. Rameev, G. Mozzhukhin, J. Barras, (Eds.). - Springer, 2014. - 168p.

Полiкаровських О. I. Технологiя Software Defined Radio та перспективи її використання / О. I. Полiкаровських, В. Є. Гавронський // Вимiрювальна та обчислювальна технiка в технологiчних процессах. - 2012. - № 1, - C. 165–169.

Хандожко А. Г. Импульсный радиоспектрометр ЯКР с эффективным подавлением переходного процесса / А. Г. Хандожко, В. А. Хандожко, А. П. Самила // Восточно-Европейский журнал передовых технологий. - 2013. - № 6/12(66). - С. 21-25.

Datasheet of AD9230 12-Bit, 170 MSPS 1.8 V Analog-to-Digital Converter http://www.analog.com/media/en/technical-documentation/data-sheets/AD9230.pdf

Hotra O. Synthesis of the configuration structure of digital receiver of NQR radiospectrometer / O. Hotra, A. Samila, L. Politansky // Przeglad Elektrotechniczny. - 2018. - Vol. 94, No. 7. - pp. 58–61.

Detlef Reichert. Receiver imperfections and CYCLOPS: An alternative description / Reichert Detlef, Gunter Hempel // Concepts in Magnetic Resonance. Part A. - 2002. - Vol. 14, Issue 2. - pp. 130–139.

Раннев Е.В. Цифровой квадратурный приемник ядерного магнитного резонанс - сигнала низкого разрешения / Е.В. Раннев // Интернет-журнал «Науковедение». - 2014. - № 1. - С. 1–11.

HDL Code Generation for FPGA and ASIC Development. The MathWorks, Inc. - 2017.

References

Itozaki H. and Ota G. (2008) Nuclear quadrupole resonance for explosive detection. International Journal on Smart Sensing and Intelligent Systems, Vol. 1, Iss. 3, pp. 705-715. DOI: 10.21307/ijssis-2017-315

Hemnani P., Joshi G., Rajarajan A. and Ravindranath S. (2016) 14N NQR spectrometer for explosive detection: A review. 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT). DOI: 10.1109/icacdot.2016.7877761

Butt N.R., Gudmundson E. and Jakobsson A. (2014) An Overview of NQR Signal Detection Algorithms. NATO Science for Peace and Security Series B: Physics and Biophysics, pp. 19-33. DOI: 10.1007/978-94-007-7265-6_2

Chytil J. and Kubasek R. (2014) Detector for Nuclear Quadrupole Resonance Spectroscopy. Progress In Electromagnetics Research Symposium Proceedings, Guangzhou, China, pp. 1907-1910.

Beguš S., Jazbinšek V., Pirnat J. and Trontelj Z. (2014) A miniaturized NQR spectrometer for a multi-channel NQR-based detection device. Journal of Magnetic Resonance, Vol. 247, , pp. 22-30. DOI: 10.1016/j.jmr.2014.08.002

Zhang X. (2014) A low-power compact nuclear quadrupole resonance (NQR) based explosive detection system , Diss. Doctor of Philosophy : El. Eng., Lincoln-Nebraska, 205 p.

Apih T., Rameev B., Mozzhukhin G. and Barras J. (2014) Magnetic Resonance Detection of Explosives and Illicit Materials : NATO Science for Peace and Security Series B: Physics and Biophysics, Springer, 168 p. DOI: 10.1007/978-94-007-7265-6

Polikarovskykh O. I. and Havronskyi V. Ie. (2012) Tekhnolohiia Software Defined Radio ta perspektyvy yii vykorystannia. Vymiriuvalna ta obchysliuvalna tekhnika v tekhnolohichnykh protsessakh, No. 1, pp. 165-169.

Handozhko A. G., Handozhko V. A. and Samila A. P. (2013) Impulsnyiy radiospektrometr YaKR s effektivnyim podavleniem perehodnogo protsessa. Vostochno-Evropeyskiy Zhurnal Peredovyih Tehnologiy, No. 6/12(66), pp. 21-25.

AD9230 12-Bit, 170 MSPS 1.8 V Analog-to-Digital Converter. http://www.analog.com/media/en/technical-documentation/data-sheets/AD9230.pdf

Hotra O. (2018) Synthesis of the configuration structure of digital receiver of NQR radiospectrometer. PRZEGLĄD ELEKTROTECHNICZNY, Vol. 1, Iss. 7, pp. 60-63. DOI: 10.15199/48.2018.07.14

Reichert D. and Hempel G. (2002) Receiver imperfections and CYCLOPS: An alternative description. Concepts in Magnetic Resonance, Vol. 14, Iss. 2, pp. 130-139. DOI: 10.1002/cmr.10004

Rannev E. (2014) Tsyfrovoi kvadraturnyii pryemnyk yadernoho mahnytnoho rezonans - syhnala nyzkoho razreshenyia. Naukovedenye, No. 1, pp. 1-11.

HDL Code Generation for FPGA and ASIC Development. The MathWorks, Inc..

Published

2019-03-30

How to Cite

Саміла, А. П., Гресь, О. В., Русин, В., Розорінов, Г. М. and Архієрєєва, О. Г. (2019) “Simulation modeling of the digital quadrature receiver of the nuclear quadrupole resonance signals”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(76), pp. 37-43. Available at: http://radap.kpi.ua/radiotechnique/article/view/1528 (Accessed: 24October2021).

Issue

Section

Theory and Practice of Radio Measurements