Modular arithmetic application to calculate the azimuth for phase direction finder
DOI:
https://doi.org/10.20535/RADAP.2016.64.23-32Keywords:
phase finder, angular ambiguity, residue number systemAbstract
Introduction. Phase finders are designed for precise determination of the radiation source angular position. In such systems, an important task is to avoid the ambiguity measuring the signalphase shift exceeding . A new way to solve the problem associated with the use of residue number system (RNS) is proposed.Problem statement. Defined azimuth of radiation source fluctuations relative to the two bases linear receiving antenna. It is necessary to define the conditions under which the problem of estimating the azimuth based on the measurement of signals phase shifts between antenna elements is reduced to the recovery of a whole number from its RNS residues.
Theoretical results. The possibility of RNS using for phaze multiscale systems based on common property - the modular nature both numerical data RNS representations and phase measurements. It is shown that to bring the azimuth determining problem to the problem of reconstructing the whole number from its RNS residues for two bases finder is necessary: firstly, to select the modules RNS as a pair of relatively prime numbers; secondly, to select the antenna base proportional RNS modules; thirdly, to select the quanta of measuring the phase shift signal is inversely proportional to the value of the RNS modules: An example of calculating the azimuth of the direction finder for the phase two bases, which confirms the correctness of the proposed method.
Conclusion. The possibility of using RNS phase direction finder is implemented by selecting an antenna base and phase shift quantum measurement proportional to the RNS modules. In this case, the process of eliminating ambiguity measurement acquiring a new quality – the ability to identify and correct azimuth blunders. A new data processing algorithm and it's new property can significantly reduce the probability of serious errors in the phase finders.
References
Перелік посилань
Пестряков В. Б. Фазовые радиотехнические системы (основы статистической теории) / В. Б. Пестряков. – М. : Сов. Радио, 1968. – 468 с.
Денисов В. П. Фазовые радиопеленгаторы / В. П. Денисов, Д. В. Дубинин. – Томск: Томский госуд. ун-т систем управления и радиоэлектроники, 2002. – 251 с. – ISBN 5-86889-067-1.
Денисов В.П. Исследование работы фазового пеленгатора с квазиоптимальным устранением неоднозначности на наземних трассах / В. П. Денисов, В. Д. Дубинин, М. В. Крутиков, А. А. Мещеряков // Доклады ТУСУРа. – № 2 (24), часть 1. – 2011. – С. 7-15.
Акушский И. Я. Машинная арифметика в остаточных класса / И. Я. Акушский, Д. И. Юдицкий. – М. : Сов. радио, 1968. – 440 с.
Omondi A. Residue Number Systems. Theory and Implementation / Amos Omondi, Benjamin Premkumar. – London : Imperial College Press, 2007. – 296 p.
Куц В. Ю. Представлення і оброблювання даних вимірювань в системі залишкових класів // Комплексне забезпечення якості технологічних процесів та систем ; матер. V міжнар. наук.-практ. конф. – Чернігів, 2015. – С.257. – Режим доступу: http://www.stu.cn.ua/media/files/conference/Tezy%20-%202015.pdf#257
Куц Ю. В. Статистична фазометрія / Ю. В. Куц, Л. М. Щербак. – Тернопіль: Тернопільський державний технічний університет, 2009. – 383 с. – ISBN 966-305-013-6.
Куц Ю. В. Вимірювання кумулятивних фазових зсувів / Ю. В. Куц // Технічна електродинаміка. – 2001. – №5. – С. 67-72.
References
Pestryakov V. B. (1968) Fazovye radiotekhnicheskie sistemy (osnovy statisticheskoi teorii) [Phase radio engineering systems (basic statistical theory)]. Moskow, Sov. Radio, 468 p.
Denisov V. P. and Dubinin D. V. (2002) Fazovye radiopelengatory [Phase finders]. Tomsk, TUSUR, 251 p.
Denisov V.P., Dubinin D.V., Krutikov M.V., Mescheryakov A.A. (2011) Quasi-optimal method to avoid the ambiguity of bearing estimation by terrestrial finder. Proceedings of Tomsk State University of Control Systems and Radioelectronics, No 2-1, pp. 7-15. (In Russian)
Akushskii I. Ya., Yuditskii D. I. and Akushskii I. Ya. (1968) Mashinnaya arifmetika v ostatochnykh klassa [Machine arithmetic in the residual class]. Moskow, Sovetskoe radio, 440 p.
Omondi A. and Premkumar B. (2007) Residue Number Systems. Theory and Implementation, London, Imperial College Press Publ, 312 p. doi: 10.1142/9781860948671
Kuts V. Yu. (2015) Predstavlennia i obrobliuvannia danykh vymiriuvan v systemi zalyshkovykh klasiv [Submission and processing of measured data in the residual number system]. Kompleksne zabezpechennia yakosti tekhnolohichnykh protsesiv ta system [Comprehensive quality assurance processes and systems], V Int. Conf., Chernihiv, p. 257.
Shcherbak L.M. and Kuts Yu.V. (2009) Statystychna fazometriia [Statistical phasemeter], Ternopil State Technical University, 383 p.
Kuts Yu. V. (2001) Vymiriuvannia kumuliatyvnykh fazovykh zsuviv [Measuring the cumulative phase shifts]. Tekhnichna elektrodynamika, No 5, pp. 67-72.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).