Wavelet analysis of the electrocardioignals for detection of the posttraumatic myocardial dystrophy features

Authors

  • N. G. Ivanushkina National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev http://orcid.org/0000-0001-8389-7906
  • E. O. Ivan'ko National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev http://orcid.org/0000-0002-3842-2423
  • O. V. Chesnokova National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev
  • I. A. Chaikovskii Glushkov Institute of Cybernetic of NAS of Ukraine

DOI:

https://doi.org/10.20535/RADAP.2016.65.90-98

Keywords:

posttraumatic myocardial dystrophy, high resolution electrocardiography system, wavelet analysis of the electrocardiosignals, low-amplitude components of ECG

Abstract

Introduction. The features of the traumatic disease's impact on the cardiovascular system are reviewed. Numerical experiments on electrocardiosignals of the soldiers injuried by mine explosion were held. The nature of the posttraumatic myocardial dystrophy is described.
HR ECG signals' analysis. During clinical studies the registration and processing of electrocardiosignals were performed by the high resolution electrocardiography system. The time and amplitude analysis of HR ECG signals was held, and its low efficiency was approved. The integral parameters for detection of the posttraumatic myocardial dystrophy features based on the wavelet analysis of the electrocardiosignals are proposed.
Conclusion. Since the myocardial dystrophy is caused by the violation of the processes related to the transport of ions Ca2+, the changes of electrocardiosignals are visible at the highest levels of wavelet decomposition. Thus, the 8th and 9th levels of the 9-level wavelet decomposition of averaged cardiocycles showed the best result for diagnostic.

Author Biographies

N. G. Ivanushkina, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Ivanushkina N.

E. O. Ivan'ko, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Ivanko K.

O. V. Chesnokova, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Chesnokova O.

I. A. Chaikovskii, Glushkov Institute of Cybernetic of NAS of Ukraine

Chaikovskiy I.

References

Перечень ссылок

Руководство по кардиологии / под ред. В. Н. Коваленко. – К. : МОРИОН, 2008. – 1424 с.

İlhan E. Electrocardiographic features of patients with earthquake related posttraumatic stress disorder / E. İlhan, A. Kaplan, T. S. Güvenç, M. Biteker, E. Karabulut, S. Işıklı // World Journal of Cardiology. – 2013. – Vol. 5, No 3. – pp. 60-64.

Исаева А. Д. Миокардиодистрофия. Причины, симптомы, признаки, диагностика и лечение патологии [Электронный ресурс] / А. Д. Исаева. – Режим доступа: http://www.polismed.com/articles-miokardiodistrofija-prichiny-simptomy-priznaki.html.

Шок: Теория, клиника, орrанизация противошоковой помощи / под общ. ред. Г. С. Мазуркевича, С. Ф. Баrненко. – СПб. : Политехника, 2004, – 539 с.

Военно-полевая хирургия [Электронный ресурс] / под ред. Е. К. Гуманенко. – М. : ГЭОТАР-Медиа, 2008. – Режим доступа : http://www.studmedlib.ru/book/ISBN9785970409114.html

Іванушкіна Н. Г. Цифрова обробка низькоамплітудних компонент електрокардіосигналів / Н. Г. Іванушкіна, К. О. Іванько. – Миколаїв : ФОП Швець В.Д., 2014. – 184 с.

Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в MATLAB / Н. К. Смоленцев. – М. : ДМК Пресс, 2005. – 304 с.

Haque A. K. Detection of small variations of ECG features using wavelet / A. K. Haque, M. H. Ali, M. A. Kiber, M. T. Hasan // ARPN Journal of Engineering and Applied Sciences. – 2009. – Vol. 4, No 6. – pp. 27-30.

Ishikawa Y. Wavelet Theory-Based Analysis of High-Frequency, High-Resolution Electrocardiograms: A New Concept for Clinical Uses / Y. Ishikawa // Progress in Biomedical Research. – 2002. – Vol. 7, No 3. – pp. 179-184.

References

Kovalenko V. N. ed. (2008) Rukovodstvo po kardiologii [Guidelines for Cardiology]. Kyiv, MORION, 1424 p.

İlhan E., Kaplan A., Güvenç T.S., Biteker M., Karabulut E., and Işıklı S. (2013) Electrocardiographic features of patients with earthquake related posttraumatic stress disorder. World Journal of Cardiology, Vol. 5, No 3, pp. 60-64.

Isaeva A. D. Myocardiodystrophy. Causes, symptoms, signs, diagnosis and treatment of disease. Available at: http://www.polismed.com/articles-miokardiodistrofija-prichiny-simptomy-priznaki.html.

Mazurkevicha G. S. eds, Barnenko S. F. (2004) Shok: Teoriya, klinika, orranizatsiya protivoshokovoi pomoshchi [Shock: Theory, clinic, organization antishock aid]. SPb, Politekhnika, 539 p.

Gumanenko E. K. eds. (2008) Voenno-polevaya khirurgiya [Military Field Surgery]. Moskow, GEOTAR-Media

Ivanushkina N. H., and Ivanko K. O. (2014) Tsyfrova obrobka nyzkoamplitudnykh komponent elektrokardiosyhnaliv [Digital processing of low amplitude components of electrocardiosignal]. Mykolaiv, FOP Shvets V.D., 184 p.

Smolentsev N. K. (2005) Osnovy teorii veivletov. Veivlety v MATLAB [Fundamentals of wavelet theory. Wavelets in MATLAB]. Moskow, DMK Press, 304 p.

Haque A. K., Ali M. H., Kiber M. A., and Hasan M. T. (2009) Detection of small variations of ECG features using wavelet. ARPN Journal of Engineering and Applied Sciences, Vol. 4, No 6, pp. 27-30.

Ishikawa Y. (2002) Wavelet Theory-Based Analysis of High-Frequency, High-Resolution Electrocardiograms: A New Concept for Clinical Uses. Progress in Biomedical Research, vol. 7, № 3, pp. 179-184.

Published

2016-06-30

How to Cite

Иванушкина, Н. Г., Иванько, Е. О., Чеснокова, О. В. and Чайковский, И. А. (2016) “Wavelet analysis of the electrocardioignals for detection of the posttraumatic myocardial dystrophy features”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(65), pp. 90-98. doi: 10.20535/RADAP.2016.65.90-98.

Issue

Section

Radioelectronics Medical Technologies