Artificial neural networks in problems of material objects implementation. Part 1. Networking principles and Classification
DOI:
https://doi.org/10.20535/RADAP.2011.47.176-189Keywords:
artificial neural networks, activation function, neural networks classificationAbstract
The main historical development stages of artificial neural networks are presented. The mathematical model of artificial neurons and the basic elements of neural networks are considered. Typical activation functions are characterized with their advantages and disadvantages. One of possible problem solution of the neural networks classification is given according to different classification features. Expediency of neural networks using in problems of material objects implementation is substantiated. That will allow in the nearest future to bring engineering intuition and experience components in the calculations.References
Заенцев И.В. Нейронные сети: основные модели: учебное пособие для студентов / Заенцев И.В.— Воронеж:ВГУ, 1999. — 76с.
Turing A.M. Computing machinery and intelligence / Turing A.M. // Mind. — 1950.— vol. 59, №236. — P. 433—460.
McCulloch W.S. A logical Calculus of Ideas Immanent in Nervous Activity / McCulloch W.S., Pitts W. // Bull. Mathematical Biophysics. — 1943. — vol. 5 — P. 115—133.
Уоссермен Ф. Нейрокомпьютерная техника: теория и практика / Уоссермен Ф.; пер. с англ. Ю. А. Зуев, В. А. Точенов. — М.:Мир, 1999. — 184с. — ISBN 5060040941.
Rosenblatt F. The Perceptron: a probabilistic model for information storage and organization in the brain / F. Rosenblatt // Cornell Aeronautical Laboratory, Psychological Review — 1958 — vol.65, No. 6 — P. 386—408c.
Розенблатт Ф. Принципы нейродинамики. Перцептроны и теория механизмов мозга / Ф. Розенблатт. — М.: Мир, 1965. — 175с.
Estebon M.D. Perceptrons: An Associative Learning Network / M.D. Estebon // Virginia Tech. — 1997.
Widrow B. Adaptive switching circuits / B.Widrow, M.E. Hoff // IRE WESCON Convention Record. — 1960. — P. 96—104.
Бодянский Е.В. Искусственные нейронные сети: архитектуры, обучение, применения / Е.В. Бодянский, О.Г. Руденко. — Харьков: Телетех, 2004. — 369с. — ISBN 966-954116-2-2.
Минский М. Л. Персептроны / М. Л. Минский, С. Пейперт. — М.: Мир, 1971 —— УДК 62-506.222.001.57.
Аркадьев А. Г. Обучение машины классификации объектов / А. Г. Аркадьев, Э. М. Браверман. — М.: Наука, 1971 — 192с.
Werbos P. J. Beyond regression: New tools for prediction and analysis in the behavioral sciences / P. J. Werbos // Ph.D. thesis, Harvard University, Cambridge — 1974.
Галушкин А. И. Синтез многослойных систем распознавания образов / А. И. Галушкин. — М.: «Энергия», 1974 — 368с.
Hopfield J. J. Neural networks and physical systems with emergent collective computational abilities / J. J. Hopfield // Proceedings of National Academy of Sciences. — 1984. — vol. 79. —P.2554—2558.
Rumelhart D. E. Learning Internal Representations by Error Propagation In: Parallel Distributed Processing / D. E. Rumelhart, G. E. Hinton, R.J. Williams // Cambridge, MA, MIT Press. — 1986. — vol. 1 — P. 318—362.
Барцев С. И. Адаптивные сети обработки информации / С. И. Барцев, В. А. Охонин. — Красноярск: Ин-т физики СО АН СССР, 1986. — 20 с. — (Препринт/ Красноярск: Ин-т физики СО АН СССР; N 59Б. ).
Миркес Е. М. Нейрокомпьютер. Проект стандарта / Е. М. Миркес. — Новосибирск: Наука, 1999. — 337 с. — ISBN 5-02-031409-9.
Крючин О. В. Реализация параллельного алгоритма подбора активационных функций искусственной нейронной сети / О. В. Крючин, А. А. Арзамасцев. — ЭФТЖ — 2011. — т.6 — С.52— 61.
Круглов В. В. Искусственные нейронные сети. Теория и практика / В. В. Круглов, В. В. Борисов. — М.: Горячая линия — Телком, 2002. — 382с. — ISBN 5-93517-031-0.
Ясницкий Л. Н. Введение в искусственный интеллект: Учеб. пособие для студ. высш. учеб. заведений / Л. Н. Ясницкий. — Издательский центр «Академия», 2005. — 176 с. — ISBN 5-7695-1958-4.
Хайкин С. Нейронные сети. Полный курс / С. Хайкин — М.: Вильямс, 2006 — 1104с. — ISBN5-8459-0890-6.
Hopfield J.J. Neurons with graded response have collective computational properties like those of two-state neurons / J.J. Hopfield // Proceedings of the National Academy of Sciences of the USA. — 1984. — vol.81 — P. 3088—3092.
Kosko B. Bi-directional associative memories / B. Kosko // IEEE Transactions on Systems, Man and Cybernetics. — 1987. — vol.18 — P.49—60.
Горбань А.Н. Нейронные сети на персональном компьютере / А. Н. Горбань, Д. А. Россиев. — Новосибирск: Наука, 1996 — 276 с. — ISBN 5020311960.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).